Free Republic
Browse · Search
Topics · Post Article

Skip to comments.

Biologists' new peptide could fight many cancers ^ | January 16, 2018 | by Anne Trafton, & Massachusetts Institute of Technology

Posted on 01/16/2018 2:30:48 PM PST by Red Badger

MIT biologists have designed a new peptide that can disrupt a key protein that many types of cancers, including some forms of lymphoma, leukemia, and breast cancer, need to survive.

The new peptide targets a protein called Mcl-1, which helps cancer cells avoid the cellular suicide that is usually induced by DNA damage. By blocking Mcl-1, the peptide can force cancer cells to undergo programmed cell death.

"Some cancer cells are very dependent on Mcl-1, which is the last line of defense keeping the cell from dying. It's a very attractive target," says Amy Keating, an MIT professor of biology and one of the senior authors of the study.

Peptides, or small protein fragments, are often too unstable to use as drugs, but in this study, the researchers also developed a way to stabilize the molecules and help them get into target cells.

Loren Walensky, a professor of pediatrics at Harvard Medical School and a physician at Dana-Farber Cancer Institute, is also a senior author of the study, which appears in the Proceedings of the National Academy of Sciences the week of Jan. 15. Researchers in the lab of Anthony Letai, an associate professor of medicine at Harvard Medical School and Dana-Farber, were also involved in the study, and the paper's lead author is MIT postdoc Raheleh Rezaei Araghi.

A promising target

Mcl-1 belongs to a family of five proteins that play roles in controlling programmed cell death, or apoptosis. Each of these proteins has been found to be overactive in different types of cancer. These proteins form what is called an "apoptotic blockade," meaning that cells cannot undergo apoptosis, even when they experience DNA damage that would normally trigger cell death. This allows cancer cells to survive and proliferate unchecked, and appears to be an important way that cells become resistant to chemotherapy drugs that damage DNA.

"Cancer cells have many strategies to stay alive, and Mcl-1 is an important factor for a lot of acute myeloid leukemias and lymphomas and some solid tissue cancers like breast cancers. Expression of Mcl-1 is upregulated in many cancers, and it was seen to be upregulated as a resistance factor to chemotherapies," Keating says.

Many pharmaceutical companies have tried to develop drugs that target Mcl-1, but this has been difficult because the interaction between Mcl-1 and its target protein occurs in a long stretch of 20 to 25 amino acids, which is difficult to block with the small molecules typically used as drugs.

Peptide drugs, on the other hand, can be designed to bind tightly with Mcl-1, preventing it from interacting with its natural binding partner in the cell. Keating's lab spent many years designing peptides that would bind to the section of Mcl-1 involved in this interaction—but not to other members of the protein family.

Once they came up with some promising candidates, they encountered another obstacle, which is the difficulty of getting peptides to enter cells.

"We were exploring ways of developing peptides that bind selectively, and we were very successful at that, but then we confronted the problem that our short, 23-residue peptides are not promising therapeutic candidates primarily because they cannot get into cells," Keating says.

To try to overcome this, she teamed up with Walensky's lab, which had previously shown that "stapling" these small peptides can make them more stable and help them get into cells. These staples, which consist of hydrocarbons that form crosslinks within the peptides, can induce normally floppy proteins to assume a more stable helical structure.

Keating and colleagues created about 40 variants of their Mcl-1-blocking peptides, with staples in different positions. By testing all of these, they identified one location in the peptide where putting a staple not only improves the molecule's stability and helps it get into cells, but also makes it bind even more tightly to Mcl-1.

"The original goal of the staple was to get the peptide into the cell, but it turns out the staple can also enhance the binding and enhance the specificity," Keating says. "We weren't expecting that."

Killing cancer cells

The researchers tested their top two Mcl-1 inhibitors in cancer cells that are dependent on Mcl-1 for survival. They found that the inhibitors were able to kill these cancer cells on their own, without any additional drugs. They also found that the Mcl-1 inhibitors were very selective and did not kill cells that rely on other members of the protein family.

Keating says that more testing is needed to determine how effective the drugs might be in combating specific cancers, whether the drugs would be most effective in combination with others or on their own, and whether they should be used as first-line drugs or when cancers become resistant to other drugs.

"Our goal has been to do enough proof-of-principle that people will accept that stapled peptides can get into cells and act on important targets. The question now is whether there might be any animal studies done with our peptide that would provide further validation," she says.

Joshua Kritzer, an associate professor of chemistry at Tufts University, says the study offers evidence that the stapled peptide approach is worth pursuing and could lead to new drugs that interfere with specific protein interactions.

"There have been a lot of biologists and biochemists studying essential interactions of proteins, with the justification that with more understanding of them, we would be able to develop drugs that inhibit them. This work now shows a direct line from biochemical and biophysical understanding of protein interactions to an inhibitor," says Kritzer, who was not involved in the research.

Keating's lab is also designing peptides that could interfere with other relatives of Mcl-1, including one called Bfl-1, which has been less studied than the other members of the family but is also involved in blocking apoptosis.

Explore further: Toxic peptide payload can be delivered exclusively to cancer cells

More information: Raheleh Rezaei Araghi el al., "Iterative optimization yields Mcl-1–targeting stapled peptides with selective cytotoxicity to Mcl-1–dependent cancer cells," PNAS (2018).

Journal reference: Proceedings of the National Academy of Sciences

TOPICS: Business/Economy; Health/Medicine; Military/Veterans; Science
KEYWORDS: breastcancer; cancer; cancercure; cancerresearch; leukemia; lymphoma; peptide

MIT biologists have designed a new peptide that can disrupt a key protein that many types of cancers, including some forms of lymphoma, leukemia, and breast cancer, need to survive. Credit: Chelsea Turner/MIT

Read more at:

1 posted on 01/16/2018 2:30:48 PM PST by Red Badger
[ Post Reply | Private Reply | View Replies]

To: Red Badger


Joyfully amazing.

2 posted on 01/16/2018 2:34:18 PM PST by blueunicorn6 ("A crack shot and a good dancer")
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

Wow, not that I know a whole lot about it, but I’m usually not very impressed with these so-called breakthroughs, but this sounds like the real deal (in part because they didn’t tout it as some kind of big breakthrough). Hope they are able to get it through trials as quickly as possible. Could save a lot of lives. Thanks for posting.

3 posted on 01/16/2018 3:25:47 PM PST by LibWhacker
[ Post Reply | Private Reply | To 1 | View Replies]

To: blueunicorn6

“Joyfully amazing.”

Don’t worry, you won’t get it. Maybe Soros or Bloomberg.

4 posted on 01/16/2018 3:47:36 PM PST by dljordan (WhoVoltaire: "To find out who rules over you, simply find out who you are not allowed to criticize.")
[ Post Reply | Private Reply | To 2 | View Replies]

To: Red Badger

When it’s time for cells to die, they literally commit suicide (apoptosis) by ‘drinking’ a suicide potion called cytochrome-C which is stored between the mitochondrial walls (wall is hollow). In a number of cancers a protein belonging to the BCL2 family like the one mentioned here, is overproduced making the mitochondrial wall less permeable, thus preventing the ‘suicide potion’ from being released. So the cells survive past their shelf life - possibly even becoming immortal and start to accumulate. Blocking BCL2 has long been a target. Good to see advances being made in that area.

5 posted on 01/16/2018 3:51:55 PM PST by libh8er
[ Post Reply | Private Reply | To 1 | View Replies]

To: libh8er
Very interesting work.

"What a piece of work is man..."

6 posted on 01/16/2018 4:20:02 PM PST by cyn
[ Post Reply | Private Reply | To 5 | View Replies]

To: Red Badger

FDA approval is slated for 2075 provided all the personal checks clear on time, much later if not.

7 posted on 01/16/2018 4:44:13 PM PST by fella ("As it was before Noah so shall it be again,")
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

Bump for later

8 posted on 01/16/2018 11:21:16 PM PST by Lawgvr1955 ( Sic Semper Tyrannis)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

And like fusion, the cure is just 20 yezrs away, always.

Do you want to halt most cancers?

Quit drinking gasoline. The body does not want harmful products.

9 posted on 01/17/2018 1:04:10 AM PST by TheNext
[ Post Reply | Private Reply | To 1 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794 is powered by software copyright 2000-2008 John Robinson