In a paper published in the current issue of the scientific journal Nature Communications and titled "Direct measurement of a 27-dimensional orbital-angular-momentum state vector," a team of physicists led by the University of Rochester's Mehul Malik describe how they circumvented a basic principle of uncertainty that requires that some states of a quantum system must be understood poorly if other states are to be understood well. Determining a quantum state, such as the position of an electron or the momentum of a photon, is tricky, to say the least. That's because subatomic particles behave nothing at all like billiard balls,...