Posted on 05/28/2011 4:43:54 PM PDT by LibWhacker
BOSTONThe number of Earth-like extrasolar planets suitable for harboring advanced life could be 10 times higher than has been assumed until now, according to a new modeling study. The finding contradicts the prevailing notion that a terrestrial planet needs a large moon to stabilize the orientation of its axis and, hence, its climate.
In 1993, French mathematicians Jacques Laskar and Philippe Robutel showed that Earths large moon has a stabilizing effect on our planets climate. Without the moon, gravitational perturbations from other planets, notably nearby Venus and massive Jupiter, would greatly disturb Earths axial tilt, with vast consequences for the planets climate. The steadily orbiting moons gravitational tug counteracts these disturbances, and Earths axial tilt never veers too far from the current value of 23.5°, where 0° would mean the axis was perpendicular to the plane of Earths orbit around the sun.
Indeed, Laskar and Robutel also showed that the axial tilt of Mars, which has only two tiny moons, has varied between 10° and 60° in the past, which caused huge climate variations that in turn could have contributed to the loss of most of the planets atmosphere, leaving Mars the bone-dry desert world that it is now. Since then, most astrobiologists have assumed that Earth-like planets in other solar systems would need a comparatively large moon to support complex life over long periods of time.
Given the generally accepted idea of how Earth got its big moonthrough an improbable, dramatic collision with a Mars-sized body that knocked a huge chunk of Earth looseastronomers estimate that only 1% of all Earth-like planets in the universe might actually have such a hefty companion. That would mean that planets harboring complex life might be relatively rare.
However, Jack Lissauer, a theoretical astrophysicist at NASAs Ames Research Center in Moffet Field, California, is much more optimistic. Together with Jason Barnes, a physicist at the University of Idaho, Moscow, and John Chambers, a theoretical astrophysicist at the Carnegie Institutions Department of Terrestrial Magnetism in Washington, D.C., he has carried out large numbers of detailed numerical simulations of "moon-less Earths," which show that the consequences are less dire than is generally assumed.
Thats because really big changes in a planets tilt would occur only after a very long time, so there would be more than enough time for the evolution of life, Lissauer reported yesterday here at the summer meeting of the American Astronomical Society. The variations in Earths axial tilt would indeed be substantially larger if there was no large moon, Lissauer says, but really big excursions from the current value would only occur on time scales of billions of years. That would leave ample time for advanced land life to evolve under relatively stable climatic conditionsalthough what would happen to such life during an axial shift remains unclear.
When a planet rotates in the opposite direction to its orbital motion (which happens to be the case for Venus), the effect of gravitational perturbations on its spin axis would be even smaller, the simulations indicate. And, of course, if a planetary system contains only one planet, there are no perturbations at all. Nobody knows how common such single-planet system might be.
Not everybody is overwhelmed by the importance of the new results. I dont think [changes in a planets axial tilt] would be a problem for the development of advanced life, as any type of life would adapt to changing circumstances anyway, says planetary scientist Sara Seager of the Massachusetts Institute of Technology in Cambridge.
But Bill Borucki of NASAs Ames Research Center, who is the principal investigator of the planet-hunting Kepler satellite mission, says he is surprised and delighted by Lissauers conclusions. Kepler is searching for Earth-like planets orbiting other stars, he says, and this means much more of them might be harboring complex life. Its a wonderful result.
Call me back when the aliens land.
If the gas giant was several times more massive than Jupiter then the Earth like planet would zoom around it close to what we have now. You'd might have a longer day & night but it shouldn't be that bad.
Now if the Gas Giant was about the same size as Jupiter, day and night might last a week or two each. That would be extreme as you would essentially go through all four seasons in one day. Spring in the morning, summer in the afternoon, fall in the evening and winter at night.
And that's only if the gas giant and the earth like planet are like Jupiter and have a insignificant axis tilt, if the gas giant and/or the earth like planet was tilted like earth you'd get seasons within seasons, 4 yearly seasons to go with your 4 daily seasons.
That movie is Copyright Antonio Cidadao. The USNO uses it by permission, we should at least acknowledge the source. Dr. Cidadao is a physician who practices backyard astronomy from the balcony of his Lisbon apartment. The movie was made during March and April 1998.
God is smart!
I've seen recent estimates that there were several Mars sized bodies in the early Solar System, so a collision may not be as improbable as once thought. The bottom line is that it is better for the evolution of higher life to a have a moon.
I'd like to see her tell that to all the so called scientists trying to stir up massive panic over relatively minor and mostly naturally caused climate change.
Thanks Lonesome in Massachussets.
More Moons Around Earth? It's Not So LoonyEarth has a second moon, of sorts, and could have many others. Cruithne, the 3-mile-wide (5-km) satellite, takes 770 years to complete a horseshoe-shaped orbit around Earth, and will remain in a suspended state around Earth for at least 5,000 years. Every 385 years, it comes to its closest point to Earth, some 9.3 million miles (15 million kilometers) away. Its next close approach to Earth comes in 2285. "We found new dynamical channels through which free asteroids become temporarily moons of Earth and stay there from a few thousand years to several tens of thousands of years," said Fathi Namouni, one of the researchers, now at Princeton University. Namouni's colleague Apostolos Christou said, "At specific points in its orbit, it reverses its rate of motion with respect to Earth so it will appear to go back and forth." In his view, there are three classes of moons -- large moons in near-circular orbits around a planet, having formed soon after the planet; smaller fragments that are the products of collisions; and outer, irregular moons in odd orbits, or captured asteroids like Cruithne. In the past year, astronomers have reported finding such objects around Uranus.
by Robin Lloyd
October 29 1999
· join · view topics · view or post blog · bookmark · post new topic · subscribe · | ||
Google news searches: exoplanet · exosolar · extrasolar · | ||
· join · view topics · view or post blog · bookmark · post new topic · subscribe · | ||
Google news searches: exoplanet · exosolar · extrasolar · | ||
the rest of the Deus Ex Machina keyword:
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.