Posted on 11/07/2022 12:08:23 PM PST by Red Badger

The simple mention of the word "radiation" often evokes fear in people. For others, it's fun to think a little exposure to radiation could turn you into the next superhero, just like the Hulk.
But is it true basically everything around us is radioactive, even the food we eat? You may have heard bananas are mildly radioactive, but what does that actually mean? And despite us not being superheroes, are human bodies also radioactive?
What is radiation?
Radiation is energy that travels from one point to another, either as waves or particles. We are exposed to radiation from various natural and artificial sources every day.
Cosmic radiation from the Sun and outer space, radiation from rocks and soil, as well as radioactivity in the air we breathe and in our food and water, are all sources of natural radiation.
Bananas are a common example of a natural radiation source. They contain high levels of potassium, and a small amount of this is radioactive. But there's no need to give up your banana smoothie – the amount of radiation is extremely small, and far less than the natural "background radiation" we are exposed to every day.
Artificial sources of radiation include medical treatments and X-rays, mobile phones and power lines. There is a common misconception that artificial sources of radiation are more dangerous than naturally occurring radiation. However, this just isn't true.
There are no physical properties that make artificial radiation different or more damaging than natural radiation. The harmful effects are related to dose, and not where the exposure comes from.
What is the difference between radiation and radioactivity?
The words "radiation" and "radioactivity" are often used interchangeably. Although the two are related, they are not quite the same thing.
Radioactivity refers to an unstable atom undergoing radioactive decay. Energy is released in the form of radiation as the atom tries to reach stability, or become non-radioactive.
The radioactivity of a material describes the rate at which it decays, and the process(es) by which it decays. So radioactivity can be thought of as the process by which elements and materials try to become stable, and radiation as the energy released as a result of this process.
Ionizing and non-ionizing radiation
Depending on the level of energy, radiation can be classified into two types.
Ionizing radiation has enough energy to remove an electron from an atom, which can change the chemical composition of a material. Examples of ionizing radiation include X-rays and radon (a radioactive gas found in rocks and soil).
Non-ionizing radiation has less energy but can still excite molecules and atoms, which causes them to vibrate faster. Common sources of non-ionizing radiation include mobile phones, power lines, and ultraviolet rays (UV) from the Sun.

Diagram of electomagnetic spectrum from radio to gamma rays.
The electromagnetic spectrum includes all types of electromagnetic radiation. (brgfx/Shutterstock) Is all radiation dangerous? Not really
Radiation is not always dangerous – it depends on the type, the strength, and how long you are exposed to it.
As a general rule, the higher the energy level of the radiation, the more likely it is to cause harm. For example, we know that overexposure to ionizing radiation – say, from naturally occurring radon gas – can damage human tissues and DNA.
We also know that non-ionizing radiation, such as the UV rays from the Sun, can be harmful if the person is exposed to sufficiently high intensity levels, causing adverse health effects such as burns, cancer, or blindness.
Importantly, because these dangers are well known and understood, they can be protected against. International and national expert bodies provide guidelines to ensure the safety and radiation protection of people and the environment.
For ionizing radiation, this means keeping doses above the natural background radiation as low as reasonably achievable – for example, only using medical imaging on the part of the body required, keeping the dose low, and retaining copies of images to avoid repeat exams.
For non-ionizing radiation, it means keeping exposure below safety limits. For example, telecommunications equipment uses radiofrequency non-ionizing radiation and must operate within these safety limits.
Additionally, in the case of UV radiation from the Sun, we know to protect against exposure using sunscreen and clothing when levels reach 3 and above on the UV index.
Radiation in medicine
While there are clear risks involved when it comes to radiation exposure, it's also important to recognize the benefits. One common example of this is the use of radiation in modern medicine.
Medical imaging uses ionizing radiation techniques, such as X-rays and CT scans, as well as non-ionizing radiation techniques, such as ultrasound and magnetic resonance imaging ( MRI).
These types of medical imaging techniques allow doctors to see what's happening inside the body and often lead to earlier and less invasive diagnoses. Medical imaging can also help to rule out serious illness.
Radiation can also help treat certain conditions – it can kill cancerous tissue, shrink a tumor or even be used to reduce pain.
So are our bodies also radioactive? The answer is yes, like everything around us, we are also a little bit radioactive. But this is not something we need to be worried about.
Our bodies were built to handle small amounts of radiation – that's why there is no danger from the amounts we are exposed to in our normal daily lives. Just don't expect this radiation to turn you into a superhero any time soon, because that definitely is science fiction. Sarah Loughran, Director Radiation Research and Advice (ARPANSA), and Adjunct Associate Professor (UOW), University of Wollongong
Yes we have GLOW bananas PING!.................
That’s why the skin peels right off.
And in 10 days they are dead..................
Attack of the 50 Foot Banana!................
It is called NORM (naturally occurring radiation). Radiation is a lot more prevalent than people realize. In fact, all of these buildings that used granite are usually radioactive (although at such low levels as to not represent a hazard). Former Governor of LA Edwin Edwards tried to extort money from the Oil and Gas Industry for radiation until they showed him that his own government buildings were more radioactive that the NORM in Oil and Gas wells. He lost. There is low levels of radioactivity in almost everything, but you are right - people are so nervous about it. Your microwave, phones and TV sets produce more than you can imagine.
I used to be a Calibration Tech and one of my tasks was sending off the company’s Dosimeters and Geiger Counters and other radiation monitoring equipment on a regular basis for recalibration.
Just sitting in the lab, stray radiation was everywhere...............
😆
Didn’t Donovan sing about this?

Decades ago, before being decimated by a plant virus, there was a different species, known as Gros Michel, or Big Mike. They look like this:
Yeah, and the B12 injections used in the US have cyanide in them. UK uses the one without cyanide.
So the free medical care wasn't that at all. It was a cruel way of monitoring long term consumption of fallout in the food supply.
In the 1990's Quaker Oates issued a formal apology. Of course the ones who hatched the whole project refused comment.
The “banana equivalent dose” has been around for a while: https://en.wikipedia.org/wiki/Banana_equivalent_dose
Cyanocobalamin is a manufactured version of vitamin B12.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.