Posted on 07/06/2022 9:19:41 AM PDT by BenLurkin
What’s unusual about this molecule is that the ion’s electric field distorts the atom in such a way that it causes the dipole’s orientation to flip at a particular distance. At shorter distances, the atom and the ion repel, while at larger distances, they attract. The distance at which this dipole flip occurs determines the bond length of the molecule.
To make this molecule, the researchers prepared a cloud of rubidium-87 atoms at a temperature of just 20µK, since higher temperatures would risk the thermal energy of the atoms and ions overcoming the weak strength of the bond. The team then used laser pulses to prepare the molecule’s constituents: firstly ionizing single atoms, then exciting a nearby rubidium atom in the ultracold cloud to the Rydberg state. The Rydberg atom is 1000 times larger than the ion since the more excited the electron is, the farther away from the nucleus it extends. When the Rydberg atom and the ion are separated by a distance comparable to the bond length, a molecule forms.
To verify the molecule’s formation, the researchers devised a special ion microscope. Unlike an optical microscope, which uses light to image an object, in this microscope an electric field separates the molecule and ionizes the Rydberg atom. The now separated ion and Rydberg core are then guided along the microscope and onto a detector. Due to their different charge-mass ratios, the Rydberg core and the ion will arrive at this detector at different times, allowing each of them to be detected individually.
(Excerpt) Read more at physicsworld.com ...
I don't know much about this stuff, but is this kinda like genital mutilation surgery?
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.