Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Physicists Discover “Secret Sauce” Behind Unusual Exotic Properties of New Quantum Material
https://scitechdaily.com ^ | JANUARY 18, 2022 | By ELIZABETH A. THOMSON, MIT MATERIALS RESEARCH LABORATORY

Posted on 01/18/2022 8:16:00 AM PST by Red Badger

A visualization of the zero-energy electronic states – also known as a ‘Fermi surface’ – from the kagome material studied by MIT’s Riccardo Comin and colleagues. Credit: Comin Laboratory, MIT

**************************************************************************

Work will aid design of other unusual quantum materials with many potential applications.

MIT physicists and colleagues have discovered the “secret sauce” behind some of the exotic properties of a new quantum material that has transfixed physicists due to those properties, which include superconductivity. Although theorists had predicted the reason for the unusual properties of the material, known as a kagome metal, this is the first time that the phenomenon behind those properties has been observed in the laboratory.

“The hope is that our new understanding of the electronic structure of a kagome metal will help us build a rich platform for discovering other quantum materials,” says Riccardo Comin, the Class of 1947 Career Development Assistant Professor of Physics at MIT, whose group led the study. That, in turn, could lead to a new class of superconductors, new approaches to quantum computing, and other quantum technologies.

The work is reported in the January 13, 2022, online issue of the journal Nature Physics.

Classical physics can be used to explain any number of phenomena that underlie our world—until things get exquisitely small. Sub-atomic particles like electrons and quarks behave differently, in ways that are still not fully understood. Enter quantum mechanics, the field that tries to explain their behavior and resulting effects.

The kagome metal at the heart of the current work is a new quantum material, or one that manifests the exotic properties of quantum mechanics at a macroscopic scale. In 2018 Comin and Joseph Checkelsky, MIT’s Mitsui Career Development Associate Professor of Physics, led the first study on the electronic structure of kagome metals, spurring interest into this family of materials. Members of the kagome metal family are composed of layers of atoms arranged in repeating units similar to a Star of David or sheriff’s badge. The pattern is also common in Japanese culture, particularly as a basketweaving motif.

“This new family of materials has attracted a lot of attention as a rich new playground for quantum matter that can exhibit exotic properties such as unconventional superconductivity, nematicity, and charge-density waves,” says Comin.

Unusual Properties Superconductivity and hints of charge density wave order in the new family of kagome metals studied by Comin and colleagues were discovered in the laboratory of Professor Stephen Wilson at the University of California, Santa Barbara, where single crystals were also synthesized (Wilson is a coauthor of the Nature Physics paper). The specific kagome material explored in the current work is made of only three elements (cesium, vanadium, and antimony) and has the chemical formula CsV3Sb5.

The researchers focused on two of the exotic properties that a kagome metal shows when cooled below room temperatures. At those temperatures, electrons in the material begin to exhibit collective behavior. “They talk to each other, as opposed to moving independently,” says Comin.

MIT graduate student Seongyong Lee? loads a sample at the ARPES beamline of the Pohang Light Source in Korea, where a key set of measurements were taken for a study of a kagome metal. Credit: Seongyong Lee

***********************************************************************

One of the resulting properties is superconductivity, which allows a material to conduct electricity extremely efficiently. In a regular metal, electrons behave much like people dancing individually in a room. In a kagome superconductor, when the material is cooled to 3 Kelvin (~-454 Fahrenheit) the electrons begin to move in pairs, like couples at a dance. “And all these pairs are moving in unison, as if they were part of a quantum choreography,” says Comin.

At 100 Kelvin, the kagome material studied by Comin and collaborators exhibits yet another strange kind of behavior known as charge density waves. In this case, the electrons arrange themselves in the shape of ripples, much like those in a sand dune. “They’re not going anywhere; they’re stuck in place,” Comin says. A peak in the ripple represents a region that is rich in electrons. A valley is electron-poor. “Charge density waves are very different from a superconductor, but they’re still a state of matter where the electrons have to arrange in a collective, highly organized fashion. They form, again, a choreography, but they’re not dancing anymore. Now they form a static pattern.”

Comin notes that kagome metals are of great interest to physicists in part because they can exhibit both superconductivity and charge density waves. “These two exotic phenomena are often in competition with one another, therefore it is unusual for a material to host both of them.”

The Secret Sauce? But what is behind the emergence of these two properties? “What causes the electrons to start talking to each other, to start influencing each other? That is the key question,” says first author Mingu Kang, a graduate student in the MIT Department of Physics also affiliated with the Max Planck POSTECH Korea Research Initiative. That’s what the physicists report in Nature Physics. “By exploring the electronic structure of this new material, we discovered that the electrons exhibit an intriguing behavior known as an electronic singularity,” Kang says. This particular singularity is named for Léon van Hove, the Belgian physicist who first discovered it.

The van Hove singularity involves the relationship between the electrons’ energy and velocity. Normally, the energy of a particle in motion is proportional to its velocity squared. “It’s a fundamental pillar of classical physics that [essentially] means the greater the velocity, the greater the energy,” says Comin. Imagine a Red Sox pitcher hitting you with a fast ball. Then imagine a kid trying to do the same. The pitcher’s ball would hurt a lot more than the kid’s, which has less energy.

What the Comin team found is that in a kagome metal, this rule doesn’t hold anymore. Instead, electrons traveling with different velocities happen to all have the same energy. The result is that the pitcher’s fast ball would have the same physical effect as the kid’s. “It’s very counterintuitive,” Comin says. He noted that relating the energy to the velocity of electrons in a solid is challenging and requires special instruments at two international synchrotron research facilities: Beamline 4A1 of the Pohang Light Source and Beamline 7.0.2 (MAESTRO) of the Advanced Light Source at Lawrence Berkeley National Lab.

Comments Professor Ronny Thomale of the Universität Würzburg (Germany): “Theoretical physicists (including my group) have predicted the peculiar nature of van Hove singularities on the kagome lattice, a crystal structure made of corner-sharing triangles. Riccardo Comin has now provided the first experimental verification of these theoretical suggestions.” Thomale was not involved in the work.

When many electrons exist at once with the same energy in a material, they are known to interact much more strongly. As a result of these interactions, the electrons can pair up and become superconducting, or otherwise form charge density waves. “The presence of a van Hove singularity in a material that has both makes perfect sense as the common source for these exotic phenomena” adds Kang. “Therefore, the presence of this singularity is the ‘secret sauce’ that enables the quantum behavior of kagome metals.”

The team’s new understanding of the relationship between energy and velocities in the kagome material “is also important because it will enable us to establish new design principles for the development of new quantum materials,” Comin says. Further, “we now know how to find this singularity in other systems.”

Direct Feedback

When physicists are analyzing data, most of the time that data must be processed before a clear trend is seen. The kagome system, however, “gave us direct feedback on what’s happening,” says Comin. “The best part of this study was being able to see the singularity right there in the raw data.”

Reference:

“Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5” by Mingu Kang, Shiang Fang, Jeong-Kyu Kim, Brenden R. Ortiz, Sae Hee Ryu, Jimin Kim, Jonggyu Yoo, Giorgio Sangiovanni, Domenico Di Sante, Byeong-Gyu Park, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Efthimios Kaxiras, Stephen D. Wilson, Jae-Hoon Park and Riccardo Comin, 13 January 2022, Nature Physics.

DOI: 10.1038/s41567-021-01451-5

Additional authors of the Nature Physics paper are Shiang Fang of Rutgers University; Jeung-Kyu Kim, Jonggyu Yoo, and Jae-Hoon Park of Max Planck POSTECH/Korea Research Initiative and Pohang University of Science and Technology (Korea); Brenden Ortiz of the University of California, Santa Barbara; Jimin Kim of the Institute for Basic Science (Korea); Giorgio Sangiovanni of the Universität Würzburg (Germany); Domenico Di Sante of the University of Bologna (Italy) and the Flatiron Institute; Byeong-Gyu Park of Pohang Light Source (Korea); Sae Hee Ryu, Chris Jozwiak, Aaron Bostwick and Eli Rotenberg of Lawrence Berkeley National Laboratory; and Efthimios Kaxiras of Harvard University.

This work was funded by the Air Force Office of Scientific Research, the National Science Foundation, the National Research Foundation of Korea, a Samsung Scholarship, a Rutgers Center for Material Theory Distinguished Postdoctoral Fellowship, the California NanoSystems Institute, the European Union Horizon 2020 program, the German Research Foundation, and it used the resources of the Advanced Light Source, a Department of Energy Office of Science user facility.


TOPICS: Business/Economy; Education; Religion; Science
KEYWORDS: cmns; coldfusion; csv3sb5; fermisurface; josephcheckelsky; kagomematerial; kagomemetal; lenr; nematicity; physics; quantummaterial; quantummechanics; riccardocomin; science; stringtheory; superconductivity; superconductors
Navigation: use the links below to view more comments.
first previous 1-2021-4041-45 next last
To: left that other site
A BLUE Star of David?

Hmmmmmm....

Not one, but two, Mogen Davids

That makes it two Jewish...

21 posted on 01/18/2022 9:27:11 AM PST by null and void (81 million votes ≠ 81 million voters)
[ Post Reply | Private Reply | To 14 | View Replies]

To: M_Continuum

The first thing that comes to mind is the dropping of the Coulomb Barrier at such low energies due to the formation of Bose-Einstein Condensates. Hence, low energy fusion.


22 posted on 01/18/2022 9:28:11 AM PST by Kevmo (I’m immune from Covid since I don’t watch TV.🤗)
[ Post Reply | Private Reply | To 13 | View Replies]

To: Red Badger

No wonder there’s a shortage of aluminum foil at the supermarket.


23 posted on 01/18/2022 9:38:27 AM PST by Hot Tabasco
[ Post Reply | Private Reply | To 1 | View Replies]

To: Kevmo
LOL!

My granddaughter has applied to UCSB. She's drop dead gorgeous and heart-melting sweet, and her innocent allure makes Santa Barbara look downright dreary by comparison.

Should I be alarmed ("party school") or thrilled (world class professors)?

Should I give it the axe or grease the chute?

PLEASE RUSH REPLY.

24 posted on 01/18/2022 10:32:39 AM PST by Savage Beast (The Democrat Party is a 5th column in the USA. Half the population is its collaborators.)
[ Post Reply | Private Reply | To 11 | View Replies]

To: Savage Beast

If your daughter is going in for a hard science, encourage her. If not, you should quickly send her to a more wholesome school.


25 posted on 01/18/2022 10:45:29 AM PST by Kevmo (I’m immune from Covid since I don’t watch TV.🤗)
[ Post Reply | Private Reply | To 24 | View Replies]

To: null and void

LOL! C|:-)=


26 posted on 01/18/2022 11:57:17 AM PST by left that other site (A Man Without Self-Control is like a City Broken Into and Left Without Walls (Proverbs 25:28))
[ Post Reply | Private Reply | To 21 | View Replies]

To: Kevmo
Yikes!

What about Davis, Santa Cruz, or Berkeley?

27 posted on 01/18/2022 1:52:22 PM PST by Savage Beast (The Democrat Party is a 5th column in the USA. Half the population is its collaborators.)
[ Post Reply | Private Reply | To 25 | View Replies]

To: Savage Beast

For Geology, UCSB is world-class.


28 posted on 01/18/2022 3:51:18 PM PST by rfp1234 (Comitia asinorum et rhinocerum delenda sunt.)
[ Post Reply | Private Reply | To 24 | View Replies]

To: Red Badger; 6SJ7; AdmSmith; AFPhys; Arkinsaw; allmost; aristotleman; autumnraine; bajabaja; ...
Thanks Red Badger.

Commercial Photography
· List topics · post a topic · subscribe · Google ·

29 posted on 01/18/2022 4:37:57 PM PST by SunkenCiv (Imagine an imaginary menagerie manager imagining managing an imaginary menagerie.)
[ Post Reply | Private Reply | View Replies]

To: Red Badger

Is the surface area of the 6 outside triangles equal to the center hexagon?


30 posted on 01/18/2022 4:57:26 PM PST by Track9 (Agamemnon came home to a HRC type party. )
[ Post Reply | Private Reply | To 1 | View Replies]

To: Savage Beast

Davis. She can escape to conservatism within a few hundred yards.


31 posted on 01/18/2022 7:20:29 PM PST by Kevmo (I’m immune from Covid since I don’t watch TV.🤗)
[ Post Reply | Private Reply | To 27 | View Replies]

To: SunkenCiv

😀
My favorite wall plaque...
It never made sense to me until 3-years ago when I turned 85...


32 posted on 01/18/2022 7:32:01 PM PST by SuperLuminal (Where is another Sam Adams now that we desperately need him?)
[ Post Reply | Private Reply | To 29 | View Replies]

To: Track9

It would appear so....................


33 posted on 01/19/2022 5:17:44 AM PST by Red Badger (Homeless veterans camp in the streets while illegal aliens are put up in hotels.....................)
[ Post Reply | Private Reply | To 30 | View Replies]

To: Kevmo
She and her father, mother, and sister are highly intelligent conservatives. She was eager to tell me that a young man in whom she is now interested is a Republican. All this in the Bay Area.

I've been a bit reluctant about Davis because I have a relative on the faculty there who is a nut-case "liberal."

Berkeley speaks for itself, and I know how looney liberal Santa Cruz is, but I'm just going to have to trust her fundamental intelligence and basic high morality to get her through the indoctrination. So far, this has paid off.

All my children and grandchildren are of the highest calibre--which of course means conservative with strong conservative values. They have ALL resisted the indoctrination and corruption.

We are truly blessed, and I am truly grateful for God's blessings and guidance.

I also appreciate your advice.

34 posted on 01/19/2022 6:58:13 AM PST by Savage Beast (The Democrat Party is a 5th column in the USA. Half the population is its collaborators.)
[ Post Reply | Private Reply | To 31 | View Replies]

To: Savage Beast

The best thing about UCSB is the weather. It’s why they attract such amazing engineering teaching talent. The campus is literally right on the beach. I used to be so jealous of the surfers out on the waves while I was dungeoned in Engineering Building 1. You look right out the window and there’s all those Humanities majors goofing off while we worked our asses off.


35 posted on 01/19/2022 7:02:20 AM PST by Kevmo (I’m immune from Covid since I don’t watch TV.🤗)
[ Post Reply | Private Reply | To 34 | View Replies]

To: Kevmo
But it's an unwholesome place to send a lovely, innocent, conservative girl who is drop dead gorgeous?

I suppose it depends upon the strength of her integrity, and we usually cannot judge that, even in ourselves, until it is put to the test.

36 posted on 01/19/2022 7:11:34 AM PST by Savage Beast (The Democrat Party is a 5th column in the USA. Half the population is its collaborators.)
[ Post Reply | Private Reply | To 35 | View Replies]

To: Savage Beast

amen


37 posted on 01/19/2022 7:33:48 AM PST by Elsie (Heck is where people, who don't believe in Gosh, think they are not going...)
[ Post Reply | Private Reply | To 36 | View Replies]

To: Track9
Is the surface area of the 6 outside triangles equal to the center hexagon?

Which 6? The BLUE equilateral ones?

I'd say YES, but if you notice, each one is shared with two other hexagons. So; is the answer now NO?

38 posted on 01/19/2022 7:37:46 AM PST by Elsie (Heck is where people, who don't believe in Gosh, think they are not going...)
[ Post Reply | Private Reply | To 30 | View Replies]

To: Savage Beast

Yes, it is. an unwholesome place to send a lovely, innocent, conservative girl who is drop dead gorgeous

unless she is buckling down on a hard science curriculum


39 posted on 01/19/2022 7:46:07 AM PST by Kevmo (I’m immune from Covid since I don’t watch TV.🤗)
[ Post Reply | Private Reply | To 36 | View Replies]

To: Elsie

Yes, each triangle shares two sides with adjacent hexagons. Six triangles- six adjacent hexagons so each triangle is ‘shared’ so that would reduce the surface area of the triangles by two thirds I think.
I was just curious about the relationship and any implications. Certainly don’t have any advanced training in this.


40 posted on 01/19/2022 8:51:54 AM PST by Track9 (Agamemnon came home to a HRC type party. )
[ Post Reply | Private Reply | To 38 | View Replies]


Navigation: use the links below to view more comments.
first previous 1-2021-4041-45 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson