Experimenting with a magnetic field almost 1M times stronger than that of the Earth, researchers in the Scholes Group were able to modify the optoelectronic properties of model nonmagnetic organic chromophores. The modifications, according to the paper, arise from the induction of ring currents in the aromatic molecules. Aromatic ring currents can be understood as the proposal that electrons delocalized by aromaticity will move circularly when a magnetic field is applied perpendicular to the aromatic plane, typically nudging chemical shifts of nearby atoms in NMR spectroscopy. For the experiment, researchers chose a model aromatic chromophore called a phthalocyanine, which has...