Keyword: quantumcomputing
-
Projects at the University of California at Santa Barbara will focus on developing new quantum measurement techniques to manipulate and read out single electron spins in diamond. The projects will also focus on the on-chip integration of single electron spins with photonics, for communication . Additionally, the project aims to build a world-class research facility for the creation of synthetic crystal diamond and diamond heterostructure materials and devices. Diamonds fabricated by the team will complement many ongoing research initiatives on campus and around the world, including programs working towards solid-state lighting, nanoelectronics, and atomic-level storage.
-
Scientists in Japan have made a key step toward the development of a quantum computer -- a still largely hypothetical device that would be dramatically more powerful than today's supercomputers -- according to Japanese electronics giant NEC Corp. In what they claimed was a world first, researchers at NEC and the state-funded Institute of Physical and Chemical Research successfully demonstrated a circuit that can control the state of a pair of elemental particles and how strongly they interact with one another. Being able to control these particles -- called "qubits" -- in this fashion may help scientists to build a...
-
Twenty years before most scientists expected it, a commercial company has announceda quantum computer that promises to massively speed up searches and optimisation calculations. D-Wave of British Columbia has promised to demonstrate a quantum computer next Tuesday, that can carry out 64,000 calculations simultaneously (in parallel "universes"), thanks to a new technique which rethinks the already-uncanny world of quantum computing. But the academic world is taking a wait-and-see approach. D-Wave is the world's only "commercial" quantum computing company, backed by more than $20 million of venture capital (there are more commercial ventures in the related field of quantum cryptography). Its...
-
We are D-Wave Systems, Inc. The Quantum Computing Company. D-Wave is the world’s first — and only — provider of quantum computing systems designed to run commercial applications. Please join us in February as we demonstrate a technological first: an end-to-end quantum computing system powered by a 16-qubit quantum processor, running two commercial applications — live. For your convenience, we will host this event in two locations: Silicon Valley and, two days later, in Vancouver, B.C. near our home offices. We look forward to seeing you. -------------------------------------------------------------------- BOARD Haig Farris, LL.D., Chairman Dr. Farris is one of Canada's most well...
-
An individual "dopant" atom has been spied interfering with the flow of electrons through a silicon transistor for the first time. Researchers say the feat could help scientists squeeze more power out of conventional computers and ultimately develop silicon-based quantum computers. Dopants are chemical impurities that affect the flow of electrons through a conducting or semiconducting material. They are deliberately added to pure silicon, for example, to create different types of electronic component. To analyse a lone dopant atom in action, Sven Rogge and colleagues at Delft University of Technology in the Netherlands cryogenically cooled 35-nanometre-wide silicon wires, taken from...
-
Building upon recent studies on optomechanical entanglement with lasers and mirrors, a group of scientists has developed a theoretical model using entanglement swapping in order to entangle two micromechanical oscillators. This ability could lead to advances in information processing, as well as other applications that use micromechanical resonators, such as electrometers, displacement detectors, and radio frequency signal processors, wrote scientists Stefano Pirandola et al. in a recent Physical Review Letters. "Until now, entanglement has been observed only for optical modes, i.e., photons (which are massless particles)," Pirandola told PhysOrg.com. "The significance of purely mechanical entanglement would be that it involves...
-
Researchers at the Max Planck Institute of Quantum Optics (MPQ) in Garching, Germany have achieved unprecedented control over the creation of single photons (Nature, October 28, 2004). By using a tightly trapped single calcium ion, localized between two ultra-high reflectivity mirrors, and subjecting it to an external laser pulse, the scientists could emit photons one by one. The emission time and the pulse shape of each photon were completely user-controlled. Remarkably, the device was operated without interruption over a period limited only by the trapping time of the ion, typically many hours. The achievement has important applications in quantum information...
-
A research team in Japan says it has successfully demonstrated for the first time in the world in a solid-state device one of the two basic building blocks that will be needed to construct a viable quantum computer. The team has built a controlled NOT (CNOT) gate, a fundamental building block for quantum computing in the same way that a NAND gate is for classical computing. Research into quantum computers is still in its early days and experts predict it will be at least 10 years before a viable quantum computer is developed. But if they can be developed, quantum...
|
|
|