Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Scientists illuminate barrier to next-generation battery that charges very quickly
Tech Explore ^ | JANUARY 30, 2023 | by Stanford University

Posted on 01/30/2023 12:56:33 PM PST by Red Badger

This artist’s rendition shows one probe bending from applied pressure, causing a fracture in the solid electrolyte, which is filling with lithium. On the right, the probe is not pressing against the electrolyte and the lithium plates on the ceramic surface, as desired. Credit: Cube3D

*******************************************************************************

New lithium metal batteries with solid electrolytes are lightweight, inflammable, pack a lot of energy, and can be recharged very quickly, but they have been slow to develop due to mysterious short circuiting and failure. Now, researchers at Stanford University and SLAC National Accelerator Laboratory say they have solved the mystery.

It comes down to stress—mechanical stress to be more precise—especially during potent recharging.

"Just modest indentation, bending or twisting of the batteries can cause nanoscopic fissures in the materials to open and lithium to intrude into the solid electrolyte causing it to short circuit," explained senior author William Chueh, an associate professor of materials science and engineering in the School of Engineering, and of energy sciences and engineering in the new Stanford Doerr School of Sustainability.

"Even dust or other impurities introduced in manufacturing can generate enough stress to cause failure," said Chueh, who directed the research with Wendy Gu, an assistant professor of mechanical engineering.

The problem of failing solid electrolytes is not new and many have studied the phenomenon. Theories abound as to what exactly is the cause. Some say the unintended flow of electrons is to blame, while others point to chemistry. Yet others theorize different forces are at play.

In a study published Jan. 30 in the journal Nature Energy, co-lead authors Geoff McConohy, Xin Xu, and Teng Cui explain in rigorous, statistically significant experiments how nanoscale defects and mechanical stress cause solid electrolytes to fail. Scientists around the world trying to develop new, solid electrolyte rechargeable batteries can design around the problem or even turn the discovery to their advantage, as much of this Stanford team is now researching. Energy-dense, fast-charging, non-flammable lithium metal batteries that last a long time could overcome the main barriers to the widespread use of electric vehicles, among numerous other benefits.

VIDEO AT LINK............................ A scanning electron microscopy video that shows lithium plating as it takes place on a solid electrolyte. Credit: Xin Xu, Geoff McConohy and Wenfang Shi

Statistical significance

Many of today's leading solid electrolytes are ceramic. They enable fast transport of lithium ions and physically separate the two electrodes that store energy. Most importantly, they are fireproof. But, like ceramics in our homes, they can develop tiny cracks on their surface.

The researchers demonstrated through more than 60 experiments that ceramics are often imbued with nanoscopic cracks, dents, and fissures, many less than 20 nanometers wide. (A sheet of paper is about 100,000 nanometers thick.) During fast charging, Chueh and team say, these inherent fractures open, allowing lithium to intrude.

In each experiment, the researchers applied an electrical probe to a solid electrolyte, creating a miniature battery, and used an electron microscope to observe fast charging in real time. Subsequently, they used an ion beam as a scalpel to understand why the lithium collects on the surface of the ceramic in some locations, as desired, while in other spots it begins to burrow, deeper and deeper, until the lithium bridges across the solid electrolyte, creating a short circuit.

The difference is pressure. When the electrical probe merely touches the surface of the electrolyte, lithium gathers beautifully atop the electrolyte even when the battery is charged in less than one minute. However, when the probe presses into the ceramic electrolyte, mimicking the mechanical stresses of indentation, bending, and twisting, it is more probable that the battery short circuits. Theory into practice A real-world solid-state battery is made of layers upon layers of cathode-electrolyte-anode sheets stacked one atop another. The electrolyte's role is to physically separate the cathode from the anode, yet allow lithium ions to travel freely between the two. If cathode and anode touch or are connected electrically in any way, as by a tunnel of metallic lithium, a short circuit occurs.

As Chueh and team show, even a subtle bend, slight twist, or speck of dust caught between the electrolyte and the lithium anode will cause imperceptible crevices.

"Given the opportunity to burrow into the electrolyte, the lithium will eventually snake its way through, connecting the cathode and anode," said McConohy, who completed his doctorate last year working in Chueh's lab and now works in industry. "When that happens, the battery fails."

The new understanding was demonstrated repeatedly, the researchers said. They recorded video of the process using scanning electron microscopes—the very same microscopes that were unable to see the nascent fissures in the pure untested electrolyte.

It's a little like the way a pothole appears in otherwise perfect pavement, Xu explained. Through rain and snow, car tires pound water into the tiny, pre-existing imperfections in the pavement producing ever-widening cracks that grow over time.

"Lithium is actually a soft material, but, like the water in the pothole analogy, all it takes is pressure to widen the gap and cause a failure," said Xu, a postdoctoral scholar in Chueh's lab.

With their new understanding in hand, Chueh's team is looking at ways to use these very same mechanical forces intentionally to toughen the material during manufacturing, much like a blacksmith anneals a blade during production. They are also looking at ways to coat the electrolyte surface to prevent cracks or repair them if they emerge.

"These improvements all start with a single question: Why?," said Cui, a postdoctoral scholar in Gu's lab. "We are engineers. The most important thing we can do is to find out why something is happening. Once we know that, we can improve things."

More information: Geoff McConohy, Mechanical regulation of lithium intrusion probability in garnet solid electrolytes, Nature Energy (2023).

DOI: 10.1038/s41560-022-01186-4.

www.nature.com/articles/s41560-022-01186-4

Journal information: Nature Energy

Provided by Stanford University

Explore further:

On the way to high-performance solid-state batteries: Researchers develop ultra-thin solid electrolyte


TOPICS: Business/Economy; History; Military/Veterans; Science
KEYWORDS:
Navigation: use the links below to view more comments.
first 1-2021-22 next last

1 posted on 01/30/2023 12:56:33 PM PST by Red Badger
[ Post Reply | Private Reply | View Replies]

To: Red Badger

Well, box up that tech and ship it to China!


2 posted on 01/30/2023 12:59:04 PM PST by glorgau
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

I do not think the author knows what “inflammable” means.


3 posted on 01/30/2023 12:59:50 PM PST by Dr. Sivana (But yet the Son of man, when he cometh, shall he find, think you, faith on earth? (Luke 18:8))
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger
"Just modest indentation, bending or twisting of the batteries can cause nanoscopic fissures in the materials to open and lithium to intrude into the solid electrolyte causing it to short circuit," explained senior author William Chueh, an associate professor of materials science and engineering in the School of Engineering, and of energy sciences and engineering in the new Stanford Doerr School of Sustainability.

Sounds like an ideal candidate technology to survive the rigors of an Electric Vehicle driving on Michigan roads strewn with potholes.

4 posted on 01/30/2023 1:00:05 PM PST by Yo-Yo (Is the /Sarc tag really necessary? Pray for President Biden: Psalm 109:8)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

They need to replace lithium with something else that is cheap and renewable before I will buy into the idea of batteries.


5 posted on 01/30/2023 1:02:05 PM PST by Jonty30 (THE URGE TO SAVE THE WORLD IS ALMOST ALWAYS AN URGE TO RULE IT)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Dr. Sivana

https://m.youtube.com/watch?v=6vAN88SxTRE


6 posted on 01/30/2023 1:03:21 PM PST by gundog (It was a bright cold day in April, and the clocks were striking thirteen. )
[ Post Reply | Private Reply | To 3 | View Replies]

To: Red Badger

EV is not the future.


7 posted on 01/30/2023 1:04:58 PM PST by Irenic
[ Post Reply | Private Reply | To 1 | View Replies]

To: Irenic
Maybe we could train large draft animals to obey us and pull us around in carts. I give you the future of personal transportation:


8 posted on 01/30/2023 1:09:40 PM PST by central_va (I won't be reconstructed and I do not give a damn...)
[ Post Reply | Private Reply | To 7 | View Replies]

To: Dr. Sivana

If they have short circuiting failures then inflammable is probably the right word.


9 posted on 01/30/2023 1:10:59 PM PST by KarlInOhio (Gain of Pfunction. Gain of Pfunding. Gain of Pfizer )
[ Post Reply | Private Reply | To 3 | View Replies]

To: KarlInOhio
If they have short circuiting failures then inflammable is probably the right word.

Well, that would be at odds with this paragraph later in the same article:
Many of today's leading solid electrolytes are ceramic. They enable fast transport of lithium ions and physically separate the two electrodes that store energy. Most importantly, they are fireproof.

10 posted on 01/30/2023 1:21:03 PM PST by Dr. Sivana (But yet the Son of man, when he cometh, shall he find, think you, faith on earth? (Luke 18:8))
[ Post Reply | Private Reply | To 9 | View Replies]

To: Dr. Sivana

Oddly, I think it’s the same thing as ‘flammable’. Isn’t the English language wonderful!


11 posted on 01/30/2023 1:25:17 PM PST by willgolfforfood
[ Post Reply | Private Reply | To 3 | View Replies]

To: Dr. Sivana

Either it flams, or it doesn’t flam...


12 posted on 01/30/2023 1:30:00 PM PST by Mr. K (No consequence of repealing Obamacare is worse than Obamacare)
[ Post Reply | Private Reply | To 3 | View Replies]

To: willgolfforfood
Oddly, I think it’s the same thing as ‘flammable’. Isn’t the English language wonderful!

Yes on both. A professional writer should not use words whose meaning he knows not. Our mongrel language IS wonderful.
13 posted on 01/30/2023 1:30:31 PM PST by Dr. Sivana (But yet the Son of man, when he cometh, shall he find, think you, faith on earth? (Luke 18:8))
[ Post Reply | Private Reply | To 11 | View Replies]

To: Red Badger

also, just recently we figured out how to make concrete that last thousands of years rather than 10-30 like our modern concrete. Some concrete from Roman times is still going strong, and researchers discovered the secret.

What was though to be a defect (inferior composition) is key to the concrete surviving centuries

How? When stress cracks form, small inclusions of scorched lime disintegrate from water and flow through the cracks, healing the concrete.

Our modern concrete does not have these inclusions, thus over time the cracks grow until the whole structure is compromised.

Similar situation to the Lithium batteries, perhaps they can find a analogous ability.


14 posted on 01/30/2023 1:41:11 PM PST by BereanBrain
[ Post Reply | Private Reply | To 1 | View Replies]

To: Dr. Sivana

Inflammable was used in the early days of caution signs to mean able to be inflamed or combustible, with the predictable confusion. They resolved it to either flammable or non-flammable. It could be a Brit holdover maybe, or someone who’s been asleep since the 1930’s or so.


15 posted on 01/30/2023 1:41:24 PM PST by _longranger81
[ Post Reply | Private Reply | To 3 | View Replies]

To: _longranger81
Inflammable was used in the early days of caution signs to mean able to be inflamed or combustible

I saw "Inflammable" warning signs in my childhood in the '70s. It was well-known that "Flammable" and "Inflammable" were synonyms despite the prefix, probably because both words developed in parallel.
16 posted on 01/30/2023 1:44:59 PM PST by Dr. Sivana (But yet the Son of man, when he cometh, shall he find, think you, faith on earth? (Luke 18:8))
[ Post Reply | Private Reply | To 15 | View Replies]

To: Irenic

It’s another fad, as it was 1895-1915, and will disappear in 7 years, leaving many world mfgrs with TRILLIONS in unsold inventory, parts and plants rusting away in abandoned fields.


17 posted on 01/30/2023 1:45:50 PM PST by Carriage Hill (A society grows great when old men plant trees, in whose shade they know they will never sit.)
[ Post Reply | Private Reply | To 7 | View Replies]

To: Dr. Sivana
I do not think the author knows what “inflammable” means.

I Caught that right off. I don't think this speaks well for the high and mighty Stanford University.
18 posted on 01/30/2023 1:46:27 PM PST by systemjim ( Lifetime Lover of Music)
[ Post Reply | Private Reply | To 3 | View Replies]

To: _longranger81

Inflammable was commonly used in my youth (and this was a couple-three decades after the 1930s) to mean capable of burning.


19 posted on 01/30/2023 2:43:56 PM PST by steve86 (Numquam accusatus, numquam ad curiam ibit, numquam ad carcerem™)
[ Post Reply | Private Reply | To 15 | View Replies]

To: central_va

Oh no, too much backend pollution.

It will be the communist utopia of small sardine towns and bicycles for travel.

It will be a thrill and a treat to leave the assigned room and ride a bike. Although, bike rides must be limited because they will cause the to production of too much carbon dioxide.

Perhaps their little towns will be bicycle powered and people will ride in shifts.

Look at the city pound, that’s the framework of what they want and a fine high quality cricket kibble for the meals. Elites like Gates/Soros etc will be the jailers carrying the keys.

That’s the vision that they’ve given me to believe.


20 posted on 01/30/2023 3:08:24 PM PST by Irenic
[ Post Reply | Private Reply | To 8 | View Replies]


Navigation: use the links below to view more comments.
first 1-2021-22 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson