Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

An integrated circuit of pure magnons
techxplore.com ^ | October 20, 2020 | by University of Vienna

Posted on 10/22/2020 7:41:23 AM PDT by Red Badger

The directional coupler with a visible atomic structure is depicted. Spin wave jumps from one nanowire conduit to another nanowire at the point where the conduits are getting closer one to another. Credit: Niels Paul Bethe

===========================================================================

Researchers led by Technische Universität Kaiserslautern (TUK) and the University of Vienna successfully constructed a basic building block of computer circuits using magnons to convey information, in place of electrons. The 'magnonic half-adder' described in Nature Electronics, requires just three nanowires, and far less energy than the latest computer chips.

A team of physicists are marking a milestone in the quest for smaller and more energy-efficient computing: they developed an integrated circuit using magnetic material and magnons to transmit binary data, the 1s and 0s that form the foundation of today's computers and smartphones.

The new circuit is extremely tiny, with a streamlined, 2-D design that requires about 10 times less energy than the most advanced computer chips available today, which use CMOS technology. While the current magnon configuration is not as fast as CMOS, the successful demonstration can now be explored further for other applications, such as quantum or neuromorphic computing.

Successful collaboration

The prototype is the culmination of four years of effort funded through Andrii Chumak's European Research Council (ERC) Starting Grant, and close collaboration with Jun.-Prof. Dr. Philipp Pirro at TUK, and Dr. Qi Wang, who is currently a postdoc at University of Vienna. Univ.-Prof. Chumak started the work at TUK and now leads a research group at University of Vienna.

"We are very happy since we managed to do what was planned several years ago and it works even better than we expected," Chumak says. When he first proposed the magnon circuit, his design was very complex. He credits Wang, the lead author of the paper, with making the design "at least 100 times better."

Chumak says, "We see now that magnonics circuits can be as good as CMOS, but this is probably not yet enough if you want to trigger industry. I would assume you have to be still at least 100 times smaller and faster. But this circuit opens up fantastic opportunities beyond binary data, for example to quantum magnonic computing at very low temperatures."

Pirro adds, "We are also interested in adapting the circuit for neuromorphic magnonic computers inspired by the functionality of our brain."

How it works

The nanocircuit components measures less than one micrometer, far thinner than a human hair and hardly visible even under a microscope. It comprises three nanowires made of a magnetic material called yttrium iron garnet. The wires are positioned precisely in relationship to each other to create two "directional couplers" which guide magnons through the wires. Magnons are quanta of spin waves—think of them like ripples on the surface of pond after throwing in a rock, but in this case, the waves are formed by distortions in the magnetic order of a solid material on the quantum level. It took a lot of time and effort to figure out the best nanowire length and spacing to generate the desired outcomes. Wang worked on the project for his Ph.D. at TUK. "This is the 3rd or 4th design," he says. "I ran a few hundred simulations for different types of half-adders."

At the first coupler, where two wires are very close together, the spin wave is split in half. One half proceeds to the second coupler, where it jumps back and forth between the wires. Depending on the amplitude, the wave will exit either the top or bottom wire, which corresponds to binary '1' or '0,' respectively. Since the circuit contains two directional couplers that add together two streams of information, it forms a 'half-adder,' one of the most universal components of computer chips. Millions of these circuits can be combined to conduct increasingly complex calculations and functions.

"What typically requires hundreds of components and 14 transistors in regular computers, here only requires three nanowires, a spin wave, and nonlinear physics," Pirro says.

Future applications

Pirro, who is currently leading the direction of spintronic computing at TUK in the frames of the collaborative research center "Spin+X," will now explore using the magnon circuit for neuromorphic computing, which approaches data processing not as binary, but more like the human brain. Spin waves are much better suited for the more complex systems and have the potential to carry a great deal more information because they have two parameters—amplitude, which is wave height, and phase, which is the wave angle. In the current demonstration, the team did not use phase as a variable in order to keep it simple for binary data processing.

"If this device can already compete with CMOS, even if it is not using the full power of the wave-based approach, then we can be quite confident a scheme using the full power of the spin wave can be more efficient than CMOS for certain tasks," Pirro says. "And the ultimate goal, of course, is to combine the strengths of both CMOS and magnonics technologies together."

Explore further:

Magnonic nano-fibers opens the way towards new type of computers

More information: Q. Wang et al. A magnonic directional coupler for integrated magnonic half-adders, Nature Electronics (2020). DOI: 10.1038/s41928-020-00485-6

Journal information: Nature Electronics

Provided by University of Vienna


TOPICS: Business/Economy; History; Science
KEYWORDS: physics; quantummechanics; science
Navigation: use the links below to view more comments.
first 1-2021-22 next last

1 posted on 10/22/2020 7:41:23 AM PDT by Red Badger
[ Post Reply | Private Reply | View Replies]

To: ShadowAce; Swordmaker; NVDave

Tech Ping!.................


2 posted on 10/22/2020 7:48:54 AM PDT by Red Badger (Sine Q-Anon.....................very............)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

My favorite magnons are the filets (waddya want?....I haven’t had my coffee yet).


3 posted on 10/22/2020 7:51:27 AM PDT by noiseman (The only thing necessary for the triumph of evil is for good men to do nothing.`)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger
the successful demonstration can now be explored further for other applications, such as quantum or neuromorphic computing.
BTW, “magnon” is a fundamental element of magnetism, apparently equivalent to an electron in normal circuitry. I looked it up, and I figure I’m unlikely to be the only one never to have previously encountered the term.

4 posted on 10/22/2020 7:53:22 AM PDT by conservatism_IS_compassion (Socialism is cynicism directed towards society and - correspondingly - naivete towards government.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

Cool. Interesting to think about the physics and engineering that goes on in order to imitate neurological structure and function.


5 posted on 10/22/2020 7:57:03 AM PDT by Getready (Wisdom is more valuable than gold and diamonds, and harder to find.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: conservatism_IS_compassion

Cro-Magnon man knew about it long time ago!


6 posted on 10/22/2020 7:59:37 AM PDT by Getready (Wisdom is more valuable than gold and diamonds, and harder to find.)
[ Post Reply | Private Reply | To 4 | View Replies]

To: conservatism_IS_compassion

“BTW, “magnon” is a fundamental element of magnetism, apparently equivalent to an electron in normal circuitry.”

Seems odd to me, since magnetism and electricity are fundamentally linked, so you would think the fundamental element would be the same for both of them.

I mean, what’s the mass of a “magnon”? Do molecules that are magnetically attracted exchange and share magnons? Wouldn’t that mean the magnetic charge of one would be dropping and the other increasing?


7 posted on 10/22/2020 8:00:21 AM PDT by Boogieman
[ Post Reply | Private Reply | To 4 | View Replies]

To: Red Badger

I wonder which UFO crsh retrieval they got this idea from? /sarc


8 posted on 10/22/2020 8:01:39 AM PDT by MHGinTN (A dispensation perspective is a powerful tool for discernment)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger; rdb3; JosephW; Only1choice____Freedom; martin_fierro; Still Thinking; zeugma; Vinnie; ..

Tech Ping


9 posted on 10/22/2020 8:14:45 AM PDT by ShadowAce (Linux - The Ultimate Windows Service Pack)
[ Post Reply | Private Reply | To 1 | View Replies]

To: conservatism_IS_compassion

Hmm, I looked it up too, and it’s not actually a “fundamental particle”, it’s a quasiparticle, like a soliton.

So it’s an emergent effect that can behave and be treated mathematically like a particle, but it’s just composed of the combined effects of waves from “real” particles.


10 posted on 10/22/2020 8:19:17 AM PDT by Boogieman
[ Post Reply | Private Reply | To 4 | View Replies]

To: Red Badger

Directional coupler!!!

Now that brings back some memories. The ones I remember were made from metal waveguide and operated at L, S, C or X Band. These are apparently a bit smaller.


11 posted on 10/22/2020 8:21:44 AM PDT by InterceptPoint (Ted, you finally endorsed.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: InterceptPoint

I use directional couplers today that are the size of a postage stamp...................


12 posted on 10/22/2020 8:23:55 AM PDT by Red Badger (Sine Q-Anon.....................very............)
[ Post Reply | Private Reply | To 11 | View Replies]

To: Red Badger

I use directional couplers today that are the size of a postage stamp...................
+++++
I’m curious. What technology? What frequency bands? I was quoting radar bands. I’m not sure if those designations are still in common usage.


13 posted on 10/22/2020 10:51:56 AM PDT by InterceptPoint (Ted, you finally endorsed.)
[ Post Reply | Private Reply | To 12 | View Replies]

To: ShadowAce

Thanks for the ping...


14 posted on 10/22/2020 11:06:15 AM PDT by GOPJ (Did John Kerry work Iran on disinformation to hurt Trump? Iran DOES owe Kerry...)
[ Post Reply | Private Reply | To 9 | View Replies]

To: InterceptPoint

https://www.anaren.com/catalog/xinger/directional-couplers


15 posted on 10/22/2020 11:18:39 AM PDT by Red Badger (Sine Q-Anon.....................very............)
[ Post Reply | Private Reply | To 13 | View Replies]

To: InterceptPoint

https://cdn.anaren.com/product-documents/Xinger/DirectionalCouplers/XC0900A-10S/XC0900A-10S_DataSheet(Rev_F).pdf


16 posted on 10/22/2020 11:21:28 AM PDT by Red Badger (Sine Q-Anon.....................very............)
[ Post Reply | Private Reply | To 13 | View Replies]

To: InterceptPoint

17 posted on 10/22/2020 11:23:48 AM PDT by Red Badger (Sine Q-Anon.....................very............)
[ Post Reply | Private Reply | To 13 | View Replies]

To: Boogieman

I was thinking phonon, but I can see soliton also.


18 posted on 10/22/2020 11:24:45 AM PDT by Reily
[ Post Reply | Private Reply | To 10 | View Replies]

To: Boogieman
like a soliton. Ok. Hands up, don’t shoot!

Just an old ME, not a young physicist . . .

19 posted on 10/22/2020 11:46:21 AM PDT by conservatism_IS_compassion (Socialism is cynicism directed towards society and - correspondingly - naivete towards government.)
[ Post Reply | Private Reply | To 10 | View Replies]

To: Reily

Yeah, phonons are the same kind of phenomenon, just produced by a different kind of waves.

What is interesting to me about these pseudoparticles is that they demonstrate that the interaction of “out” waves from different origins alone can produce at least the appearance of a particle, and not just that, but seemingly any variety of particle. Which is kind of exactly what the Milo Wolff’s Wave Structure of Matter theory proposes accounts for ALL particles, not just pseudoparticles. So how can we tell if Wolff’s not correct? Is there some property of a “real” particle that can definitively distinguish it from a pseudoparticle? Pseudos can have charge, spin, mass, etc, so how can you say that they are not all “pseudoparticles”, just creating each other by the interactions of their waves?


20 posted on 10/22/2020 12:01:55 PM PDT by Boogieman
[ Post Reply | Private Reply | To 18 | View Replies]


Navigation: use the links below to view more comments.
first 1-2021-22 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson