Posted on 05/12/2016 10:00:37 AM PDT by JimSEA
Using the oldest fossil micrometeorites -- space dust -- ever found, Monash University-led research has made a surprising discovery about the chemistry of Earth's atmosphere 2.7 billion years ago.
The findings of a new study published today in the journal Nature -- led by Dr Andrew Tomkins and a team from the School of Earth, Atmosphere and Environment at Monash, along with scientists from the Australian Synchrotron and Imperial College, London -- challenge the accepted view that Earth's ancient atmosphere was oxygen-poor. The findings indicate instead that the ancient Earth's upper atmosphere contained about the same amount of oxygen as today, and that a methane haze layer separated this oxygen-rich upper layer from the oxygen-starved lower atmosphere.
Dr Tomkins explained how the team extracted micrometeorites from samples of ancient limestone collected in the Pilbara region in Western Australia and examined them at the Monash Centre for Electron Microscopy (MCEM) and the Australian Synchrotron.
"Using cutting-edge microscopes we found that most of the micrometeorites had once been particles of metallic iron -- common in meteorites -- that had been turned into iron oxide minerals in the upper atmosphere, indicating higher concentrations of oxygen than expected," Dr Tomkins said.
(Excerpt) Read more at sciencedaily.com ...
?!
No: In the ozonosphere, three O2 molecules are (temporarily) formed from two O3 molecules. Then, the process is reversed. Thus, atomic oxygen (i.e., single atoms of oxygen) is also present to a certain degree. And don't forget that - compared to ground level - it's a near-vacuum up there. Methane in such miniscule concentrations wouldn't "burn" with a visible flame.
Regards,
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.