Posted on 08/18/2009 10:37:08 AM PDT by LibWhacker
The Invariant Set Postulate differentiates between reality and unreality, suggesting the existence of a state space, within which a smaller subset of state space (reality) is embedded.
(PhysOrg.com) -- Since the early days of quantum mechanics, scientists have been trying to understand the many strange implications of the theory: superpositions, wave-particle duality, and the observers role in measurements, to name a few. Now, a new proposed law of physics that describes the geometry of physical reality on the cosmological scale might help answer some of these questions. Plus, the new law could give some clues about the role of gravity in quantum physics, possibly pointing the way to a unified theory of physics.
Tim Palmer, a weather and climate researcher at the European Centre for Medium-Range Weather Forecasts in Reading, UK, has been interested in the idea of a new geometric framework for quantum theory for a long time. Palmers doctoral thesis was in general relativity theory at Oxford University in the late 1970s. His studies convinced him that a successful quantum theory of gravity requires some geometric generalization of quantum theory, but at the time he was unsure what specific form this generalization should take. Over the years, Palmers professional research moved away from this area of theoretical physics, and he is now one of the worlds experts on the predictability of climate, a subject which has considerable input from nonlinear dynamical systems theory. In a return to his original quest for a realistic geometric quantum theory, Palmer has applied geometric thinking inspired by such dynamical systems theory to propose the new law, called the Invariant Set Postulate, described in a recent issue of the Proceedings of the Royal Society A.
As Palmer explained to PhysOrg.com, the Invariant Set Postulate is proposed as a new geometric framework for understanding the basic foundations of quantum physics. "Crucially, the framework allows a differentiation between states of physical reality and physical 'unreality,'" he said.
The theory suggests the existence of a state space (the set of all possible states of the universe), within which a smaller (fractal) subset of state space is embedded. This subset is dynamically invariant in the sense that states which belong on this subset will always belong to it, and have always belonged to it. States of physical reality are those, and only those, which belong to this invariant subset of state space; all other points in state space are considered unreal. Such points of unreality might correspond to states of the universe in which counterfactual measurements are performed in order to answer questions such as what would the spin of the electron have been, had my measuring apparatus been oriented this way, instead of that way? Because of the Invariant Set Postulate, such questions have no definite answer, consistent with the earlier and rather mysterious notion of complementarity introduced by Niels Bohr.
According to Palmer, quantum mechanics is not itself sufficiently complete to determine whether a point in state space lies on the invariant set, and indeed neither is any algorithmic extension to quantum theory. As Palmer explains, in quantum theory, states associated with these points of unreality can only be described by abstract mathematical expressions which have the algebraic form of probability but without any underlying sample space. It is this which gives quantum theory its rather abstract mathematical form.
As well as being able to provide an understanding of the notion of complementarity, the two-fold ontological nature of state space can also be used to explain one of the long-standing mysteries of quantum theory: superpositions. According to the Invariant Set Postulate, the reason that Schrodingers cat seems to be both alive and dead simultaneously is not because it is, in reality, in two states at once, but rather because quantum mechanics is ignorant of the intricate structure of the invariant set which determines the notion of reality. Whichever point (alive or dead) lies on the invariant set, that one is real. The notion of quantum coherence, which is reflected in the concept of superposition, is, rather, carried by the self-similar geometry of the invariant set.
With superposition seemingly resolved from the perspective of the Invariant Set Postulate, other aspects of quantum mechanics can also be explained. For instance, if states are not in superpositions, then making a measurement on the quantum system does not collapse the state of the system. By contrast, in Palmers framework, a measurement merely describes a specific quasi-stationary aspect of the geometry of the invariant set, which in turn also informs us humans about the invariant set.
The Invariant Set Postulate appears to reconcile Einsteins view that quantum mechanics is incomplete, with the Copenhagen interpretation that the observer plays a vital role in defining the very concept of reality. Hence, consistent with Einsteins view, quantum theory is incomplete since it is blind to the intricate structure of the invariant set. Yet consistent with the Copenhagen interpretation, the invariant set is in part characterized by the experiments that humans perform on it, which is to say that experimenters do indeed play a key role in defining states of physical reality.
Yet another quantum mechanical concept that the Invariant Set Postulate may resolve is wave-particle duality. In the two-slit experiment, a world where particles travel to areas of destructive interference simply does not lie on the invariant set, and therefore does not correspond to a state of physical reality.
Among the remaining mysteries of quantum mechanics that the Invariant Set Postulate might help explain is the role of gravity in quantum physics. As Palmer notes, gravity has sometimes been considered as an objective mechanism for the collapse of a superposed state. However, since the Invariant Set Postulate does not require superposed states, it does not require a collapse mechanism. Rather, Palmer suggests that gravity plays a key role in defining the state space geometry of the invariant set. This idea fits with Einsteins view that gravity is a manifestation of geometry. As such, Palmer suggests, unifying the concepts of non-Euclidean causal space-time geometry and the fractal atemporal geometry of state space could lead to the long-sought theory of quantum gravity. Such a theory would be very different from previous approaches, which attempt to quantize gravity within the framework of standard quantum theory.
Palmers paper is an exploratory analysis of this Invariant Set Postulate, and he now hopes to develop his ideas into a rigorous physical theory. Just as global space-time geometric methods transformed our understanding of classical gravitational physics in the 1960s, Palmer hopes that the introduction of global state space geometric methods could give scientists a deeper understanding of quantum gravitational physics. And, as suggested above, combining these two types of geometry might help lead to the long-sought unified theory of physics.
I am not sure how he would ever be able to prove this.
Yeah. So how many angels can dance on the head of a pin?
My head hurts now....
The statists need a space where the laws of physics, and the laws of economics do not apply. Lets hope they all move there. I think it is near Berkley.
Ping....
Proof is left as an exercise to the reader.
In a nutshell: everything that we know to exist and is currently true and measurable is in one invariable state, and everything that is immeasurable or affected by some outside force (think Heisenberg) is part of this “unreal” variable state.
I was just about to write all that stuff myself, but I went and made myself a sandwich instead.
Darn.
oy
This is also sort of in-line with the concept behind Heinlein's "Number of the Beast," as well as uncounted stoner discussions about the nature of the universe.
Mark
me not understand
Mine too. I understood just enough of that to lure me into trying to understand the rest. Now I've got a bad case of brain strain.
They’re just coming up with this new law now to shift the debate from Obamacare. The physicists are all pinko/commie/libs.
bkmrk
Thanks for the ping!
Going to need a bigger calculator.
That doesn’t make your head spin?
LOL that’s really the problem. I almost understand portions, but I can’t wrap my head around the big picture. :(
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.