Posted on 07/22/2011 6:15:05 AM PDT by Red Badger
A new report published in the journal Nature describes the new machine created by Jonathan Rothberg of Ion Torrent Systems which uses semiconductors to decode DNA and takes them one step closer to being able to reach the goal of a $1000 human genome test.
Their current machine consists of a silicon chip that has 1.2 million sensors consisting of miniature wells. These wells are filled with beads containing the DNA strands to be sequenced. Detectors in the well directly measure the hydrogen ions that are produced during DNA replication.
Gordon Moore, co-founder of Intel, was the first to have his genome sequenced with the new machine because Rothberg believes that he is responsible for giving the world modern semiconductors and should be the first to be tested with them. It is also Moore and what is known as Moores Law that makes Rothberg believe his technology will hit the $1000 genome mark by 2013. Moores Law states that the number of transistors on computer chips doubles every two years.
The current machine costs around $49000 and is already on the market and being used in over 40 countries. Ion just released a new machine with a 10-fold improvement over its previous model and hopes to release a better machine within the next six months.
In addition to being able to sequence Moores genome in a few hours, the machine was also recently used in China and Germany to sequence E. coli during the most recent outbreaks. In what used to take two to eight weeks to sequence, scientists were able to determine the E. coli in only three days and begin doing something about it.
The semiconductor chips that are used have a price tag of $99 each and to sequence Moore, for example, required 1000 chips. That price is already down from the original $250 chips. Rothberg is confident that by 2013 the technological advances will allow for even cheaper chips and that they will be able to sequence complete human genomes for only $1000.
More information: An integrated semiconductor device enabling non-optical genome sequencing, Nature 475, 348352 (21 July 2011) doi:10.1038/nature10242
Abstract The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.
a, Fabricated CMOS 8′′ wafer containing approximately 200 individual functional ion sensor die. b, Unpackaged die, after automated dicing of wafer, with functional regions indicated. c, Die in ceramic package wire bonded for electrical connection, shown with moulded fluidic lid to allow addition of sequencing reagents. Image (c) Nature, doi:10.1038/nature10242
++++++++++++++++++++++++++++++++++++++++++++++++++++++
Ultimately, this will lead to HANDHELD INSTANT DNA IDENTIFICATION EQUIPMENT that police and other government agencies can use to check your identity at all times.............
ping!............
Technology really has improved, I remember it took over 10 years and millions of dollars to sequence the first human genome and that was only a few years ago.
Pretty soon, we can do it in a few seconds. Then the ‘hackers’ will be useful...................
on a less ambitions scale than a full DNA sequencer, think about the potential of similar MEMS-microfluidic biosensor arrays to detect specific substances that are produced as byproducts of diseases such as cancer. The ability to detect diseases at a very early stage could save many lives, and biosensors like this could be incorporated in mobile phone handsets, for example.
Yes, with every new technology man has the propensity for using for both good and evil..............
Please add me to the ping list.
You’ve been added. Welcome Aboard!!
There Is No Gene For The Human Spirit. .
Robot crime is just around the corner. Most security systems were designed to detect human criminals, not tiny robots. Even if a robot gets caught, the criminal may be in China. Has anyone checked the Fort Knox inventory lately?
Robot crime would violate the Asimov Three Laws of Robotics...............
kewl!
I think it will be the robots that use it against us...
http://www.digyourowngrave.com/saturday-night-live-old-glory-robot-insurance/
Yeah, they’re cute in the garden and I laugh at the one in the commercial, but $1,000 for a gnome? Seems high to me.
Silly. It's a "genome."
Means it a gnome with a G-string.
Erotic art can be expensive.
· join list or digest · view topics · view or post blog · bookmark · post a topic · subscribe · |
|||
Antiquity Journal & archive Archaeologica Archaeology Archaeology Channel BAR Bronze Age Forum Discovery Dogpile Eurekalert LiveScience Mirabilis.ca Nat Geographic PhysOrg Science Daily Science News Texas AM Yahoo Excerpt, or Link only? |
|
||
· Science topic · science keyword · Books/Literature topic · pages keyword · |
"...I'm NOT gonna pay a lot for this genome!"
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.