Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

More Range from Nickel-Rich Electric Vehicle Batteries
cleantechnica.com ^ | Dec 21, 2023 | By Oliver Peckham, PNNL

Posted on 12/22/2023 8:29:47 AM PST by Red Badger

A new nickel-rich, single-crystal battery technology is on track for rapid deployment

A seemingly simple shift in lithium-ion battery manufacturing could pay big dividends, improving electric vehicles’ (EV) ability to store more energy per charge and to withstand more charging cycles, according to new research led by the Department of Energy’s Pacific Northwest National Laboratory.

An EV’s mileage depends on the deliverable energy from each of the constituent cells of its battery pack. For lithium-ion cells—which dominate the EV battery market—both the cell-level energy capacity and the cell cost are bottlenecked by the positive electrode, or cathode.

Now that bottleneck might be opening up, thanks to an innovative, cost-effective approach for synthesizing single-crystal, high-energy, nickel-rich cathodes that was recently published in Energy Storage Materials.

Single-crystal structures for cathode materials (left) are juxtaposed with an agglomerated polycrystal structure (right).

Cathodes for conventional EV batteries use a cocktail of metal oxides—lithium nickel manganese cobalt oxides (LiNi1/3Mn1/3Co1/3O2), abbreviated NMC. When more nickel is incorporated into a cathode, it greatly increases the battery’s ability to store energy, and thus, the range of the EV. As a result, nickel-rich NMC (such as NMC811, where the “8” denotes 80% nickel) is of great interest and importance.

However, high-nickel NMC cathodes formed using the standard method are agglomerated into polycrystal structures that are rough and lumpy. This meatball-like texture has its advantages for regular NMC. For NMC811 and beyond, though, the bulbous polycrystal fissures are prone to splitting apart, causing material failure. This renders batteries made using these nickel-rich cathodes susceptible to cracking; they also begin to produce gases and decay faster than cathodes with less nickel.

Challenges of synthesizing single-crystal NMC811

One strategy to fix this problem: convert that lumpy, polycrystal NMC into a smooth, single-crystal form by eliminating the problematic boundaries between the crystals—but this conversion is easier said than done. In laboratories, single crystals are grown in environments such as molten salts or hydrothermal reactions that produce smooth crystal surfaces. However, these environments are not practical for real-world cathode manufacturing, where lower-cost, solid-state methods are preferred.

In these more typical solid-state approaches, an NMC cathode is prepared by mixing a metal hydroxide precursor with lithium salt, directly mixing and heating those hydroxides—and producing the agglomerated (lumpily clustered) polycrystal NMC. Using a multiple-step heating process results in micron-sized crystals—but they are still agglomerated, so the undesirable side effects persist.

PNNL’s solution

Led by PNNL battery experts, and in collaboration with Albemarle Corporation, the research team solved these issues by introducing a pre-heating step that changes the structure and chemical properties of the transition metal hydroxide. When the pre-heated transition metal hydroxide reacts with lithium salt to form the cathode, it creates a uniform single-crystal NMC structure that looks smooth, even under magnification.

“The one-step heating process of precursors seems straightforward, but there is a lot of interesting atomic-level phase transition involved to make the single crystal segregation possible,” said Yujing Bi, first author of the paper. “It is also convenient for industry to adopt.”

In their study, the researchers are now scaling up this single-crystal NMC811 to kilogram level by using lithium salt provided by Albemarle. The scaled single crystals were tested in realistic 2Ah lithium-ion pouch cells, using a standard graphite anode to make sure that the battery’s performance was mainly dictated by the new cathode.

The first prototype battery equipped with the scaled single crystals was stable, even after 1,000 charge and discharge cycles. When the researchers looked at the microscopic structure of the crystals after 1,000 cycles, they found no defects and a perfectly aligned electronic structure.

“This is an important breakthrough that will allow the highest energy density lithium batteries to be used without degradation,” commented Stan Whittingham, a Nobel Laureate and distinguished professor of chemistry at Binghamton University. “In addiiton, this breakthrough on long-lived batteries will be critical to their use in vehicles that can be tethered to the grid to make it more resilient and to support clean renewable energy sources.”

The synthesis method for the single-crystal, nickel-rich cathode is both innovative and cost-efficient. It is also easy to scale up, as it is a drop-in approach that allows cathode manufacturers to use existing production facilities to conveniently produce single-crystal NMC811—and even cathodes with more than 80% nickel.

“This is a fundamentally new direction for large scale production of single crystal cathode materials,” said Jie Xiao, the principal investigator of the project and a Battelle Fellow at PNNL. “This work is only part of the cathode technology we are developing at PNNL. In collaboration with Albemarle, we are addressing the scientific challenges in synthesis and scaleup of single crystals and reducing the manufacturing cost starting from raw materials.”

Rapid deployment of EV battery technology In the research phase, set to begin in early 2024, PNNL, teaming up with industry and university partners, will work to realize commercial-scale synthesis and testing with an eye toward production.

To accomplish this so quickly, they will use conventional manufacturing equipment and techniques that have been industrially adapted to include PNNL’s scale-up approach (as well as a few other innovations that further reduce costs and waste generation).

“During single-crystal synthesis at the kilograms level, we have identified a brand new world full of science and engineering challenges and opportunities”, said Xiao. “We are excited to apply this new knowledge to accelerate the commercial-scale manufacturing process.”

“We are not competing with industry,” said Xiao. “In fact, we are partnering with industry leaders like Albemarle to proactively address the scientific challenges so that industry can scale up the whole process based on the lessons and knowledge that we learned along the way.”

This work was supported by DOE’s Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technologies Office, and Vehicle Technologies Office.

Originally published on PNNL website.


TOPICS: Business/Economy; Military/Veterans; Science; Travel
KEYWORDS: battery; electric; mining; nickel; technology

1 posted on 12/22/2023 8:29:47 AM PST by Red Badger
[ Post Reply | Private Reply | View Replies]

To: Red Badger

Top global producers of nickel?

#1 Indonesia >50% world production at 1.6 million tons

How much does the USA produce? 18,000 MT


2 posted on 12/22/2023 8:36:36 AM PST by PGR88
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger
> A new nickel-rich, single-crystal battery technology is on track for rapid deployment <

Excellent news for the greenies! Just don’t show them a picture of a nickel mine.
It would ruin the moment.

P.S. Those earth movers sure aren’t EVs.

3 posted on 12/22/2023 8:37:54 AM PST by Leaning Right (The steal is real.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

How much will the batteries cost, and, how often will they catch fire or blow up?


4 posted on 12/22/2023 8:38:25 AM PST by Highest Authority (DemonRats are pure EVIL)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

Where’s the electricity going to come from?


5 posted on 12/22/2023 8:42:55 AM PST by Fresh Wind (Soros on assisting the Nazis with the Holocaust: "That's when my character was made.")
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger
It won't matter. EV's will be just like ICE cars: we could make them and fuel/power them domestically but the Dims want us to be dependent on other countries. Just like they don't let us drill and refine enough of our own oil for ICE cars, they'll make it so that the nickel mine in Michigan will be the only nickel mine in operation in the U.S.

We should drill baby drill and mine baby mine.

6 posted on 12/22/2023 8:46:48 AM PST by Tell It Right (1st Thessalonians 5:21 -- Put everything to the test, hold fast to that which is true.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

If only these researchers had $750 billion per year from the government, all energy problems would be solved!


7 posted on 12/22/2023 8:50:07 AM PST by jjotto ( Blessed are You LORD, who crushes enemies and subdues the wicked.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Fresh Wind

Electricity is created magically. It comes from the wall. No power plants needed. Just plug in and the electrons flow all on their own.


8 posted on 12/22/2023 8:50:57 AM PST by Dutch Boy (The only thing worse than having something taken from you is to have it returned broken. )
[ Post Reply | Private Reply | To 5 | View Replies]

To: Fresh Wind

> Where’s the electricity going to come from? <

Great question. The country can only supply all that additional electricity by building many more power plants.

But a liberal will (stupidly) tell you that solar panels and wind generators can do the job. And as for those filthy power plants, shut ‘em down!


9 posted on 12/22/2023 8:56:02 AM PST by Leaning Right (The steal is real.)
[ Post Reply | Private Reply | To 5 | View Replies]

To: Red Badger

Where do you plug them in ? All those gas stations that have top be replaced by overnight charging stations, will you have to rent a bed ? ,LOL


10 posted on 12/22/2023 9:00:49 AM PST by butlerweave
[ Post Reply | Private Reply | To 1 | View Replies]

To: butlerweave

they will become “Diner/Recharge/overnight sleeperies” stations where you can eat a meal or three, and take a nap while waiting for the car to recharge


11 posted on 12/22/2023 9:07:27 AM PST by Bob434
[ Post Reply | Private Reply | To 10 | View Replies]

To: Red Badger
Even if you could DOUBLE the performance of batteries (which is highly unlikely), they are still a loser compared to hydrocarbon fuels. This chart compares the volumetric efficiency (y axis) to mass efficiency (x axis).


12 posted on 12/22/2023 9:27:23 AM PST by ProtectOurFreedom (“Occupy your mind with good thoughts or your enemy will fill them with bad ones.” ~ Thomas More)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ProtectOurFreedom

Great graph. Thanks.


13 posted on 12/22/2023 9:45:24 AM PST by Steely Tom ([Voter Fraud] == [Civil War])
[ Post Reply | Private Reply | To 12 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson