Posted on 09/04/2020 5:48:07 PM PDT by LibWhacker
Note to journalists: Journalists visiting campus should follow visitor health guidelines.
Experimental evidence of quasiparticles called anyons has been found by a team of scientists at Purdue University. Electrical interference in the experiment created a pattern which the researchers called a pyjama plot; jumps in the interference pattern were the signature of the presence of anyons. (Purdue University image/James Nakamura)
WEST LAFAYETTE, Ind. New experimental evidence of a collective behavior of electrons to form "quasiparticles" called "anyons" has been reported by a team of scientists at Purdue University.
Anyons have characteristics not seen in other subatomic particles, including exhibiting fractional charge and fractional statistics that maintain a "memory" of their interactions with other quasiparticles by inducing quantum mechanical phase changes.
Postdoctoral research associate James Nakamura, with assistance from research group members Shuang Liang and Geoffrey Gardner, made the discovery while working in the laboratory of professor Michael Manfra. Manfra is a Distinguished Professor of Physics and Astronomy, Purdue's Bill and Dee O'Brien Chair Professor of Physics and Astronomy, professor of electrical and computer engineering, and professor of materials engineering. Although this work might eventually turn out to be relevant to the development of a quantum computer, for now, Manfra said, it is to be considered an important step in understanding the physics of quasiparticles.
A research paper on the discovery was published in this week's Nature Physics.
Nobel Prize-winning theoretical physicist Frank Wilczek, professor of physics at MIT, gave these quasiparticles the tongue-in-cheek name "anyon" due to their strange behavior because unlike other types of particles, they can adopt any quantum phase when their positions are exchanged.
Before the growing evidence of anyons in 2020, physicists had categorized particles in the known world into two groups: fermions and bosons. Electrons are an example of fermions, and photons, which make up light and radio waves, are bosons. One characteristic difference between fermions and bosons is how the particles act when they are looped, or braided, around each other. Fermions respond in one straightforward way, and bosons in another expected and straightforward way.
Anyons respond as if they have a fractional charge, and even more interestingly, create a nontrivial phase change as they braid around one another. This can give the anyons a type of "memory" of their interaction.
"Anyons only exist as collective excitations of electrons under special circumstances," Manfra said. But they do have these demonstrably cool properties including fractional charge and fractional statistics. It is funny, because you think, 'How can they have less charge than the elementary charge of an electron?' But they do."
Manfra said that when bosons or fermions are exchanged, they generate a phase factor of either plus one or minus one, respectively.
"In the case of our anyons the phase generated by braiding was 2π/3," he said. That's different than what's been seen in nature before."
Anyons display this behavior only as collective crowds of electrons, where many electrons behave as one under very extreme and specific conditions, so they are not thought to be found isolated in nature, Nakamura said.
"Normally in the world of physics, we think about fundamental particles, such as protons and electrons, and all of the things that make up the periodic table," he said. "But we study the existence of quasiparticles, which emerge from a sea of electrons that are placed in certain extreme conditions."
Because this behavior depends on the number of times the particles are braided, or looped, around each other, they are more robust in their properties than other quantum particles. This characteristic is said to be topological because it depends on the geometry of the system and may eventually lead to much more sophisticated anyon structures that could be used to build stable, topological quantum computers.
The team was able to demonstrate this behavior by routing the electrons through a specific maze-like etched nanostructure made of gallium arsenide and aluminum gallium arsenide. This device, called an interferometer, confined the electrons to move in a two-dimensional path. The device was cooled to within one-hundredth of a degree from absolute zero (10 millikelvin), and subjected to a powerful 9-Tesla magnetic field. The electrical resistance of the interferometer generated an interference pattern which the researchers called a pyjama plot. Jumps in the interference pattern were the signature of the presence of anyons.
"It is definitely one of the more complex and complicated things to be done in experimental physics," Chetan Nayak, theoretical physicist at the University of California, Santa Barbara told Science News.
Nakamura said the facilities at Purdue created the environment for this discovery to happen.
"We have the technology to grow the gallium arsenide semiconductor that's needed to realize our electron system. We have the nanofabrication facilities in the Birck Nanotechnology Center to make the interferometer, the device we used in our experiments. In the physics department, we have the ability to measure ultra-low temperatures and to create strong magnetic fields." he said. "So, we have all of the necessary components that allowed us to make this discovery all here at Purdue. That's a great thing about doing research here and why we've been able to make this progress."
Manfra said the next step in the quasiparticle frontier will involve building more complicated interferometers.
"In the new interferometers we will have the ability to control the location and number of quasiparticles in the chamber," he said. "Then we will be able to change the number of quasiparticles inside the interferometer on demand and change the interference pattern as we choose.
“New evidence that the quantum world is even stranger than we thought”
Maybe, but was it really strange before we thought about it?
The quantum world probably just behaves strange when we are looking.
I believe in Occam’s Razor—God done it. Simple, beautiful, and elegant.
All I had for instruction as a child were cartoons.
We lived miles from a school and the grizzly bears were thicker than fleas on a grizzly bear.
In the winter, the snow would get like two hundred feet deep.
In the summer, the snow was only one hundred feet deep.
In the spring, well, the snow turned into one hundred fifty feet of mud.
In the fall, it was cold, but it was a dry cold, so we only had tornadoes.
But, thankfully, I had cartoons.
Thanks for that. Enjoyed it very much. Very good article.
The fact that we’re usually NOT looking very attentively is probably what makes it all MOST strange.
(We never know if the cat is alive or dead...and we don’t really care.)
https://www.deviantart.com/martinsilvertant/art/Quantum-cat-food-316216266
I don’t think that means that God doesn’t want us to try and figure it out intellectually.
Why would He put us here in the midst of all of these fascinating mysteries, creating us with such inquiring Minds, and not expect us to do what Minds are gonna do?
LOL!!
Anyons appear to me to be “hive-mind” neurons that remember their prior interactions.
Are the interferometers the source of the interference?
If we could have one in the US, where would we build it?
It’s category theory but this braiding and quantum memory of what other subatomic particle they’ve had relations with wild
They always forget to ask Can this be used for online porn?
Al Gore once complained to the Washington Post that the newspaper had published a satellite photo of Earth that was ‘upside down’.
???
(Maybe he had just come from a massage, and wasn’t yet thinking straight...)
Chemistry is applied physics.
Q-anyons ?
And the less we know, the smarter we think we are - at least that’s how it works in the Dem world....since we’re talking about “strange”...
Heisenberg: “Not only is the Universe stranger than we think, it is stranger than we can think.
``
Wrong/mistaken attribution
Possible Worlds and Other Papers (1927), p. 227
I have no doubt that in reality the future will be vastly more surprising than anything I can imagine. Now my own suspicion is that the Universe is not only queerer than we suppose, but queerer than we can suppose - J. B. S. Haldane
`
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.