Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Using the Sun as a Cosmic Telescope
Scientific American ^ | May 30, 2017 | Slava G. Turyshev, Michael Shao

Posted on 05/31/2017 2:31:53 AM PDT by LibWhacker

Astronomers want to harness [the Sun's] spacetime-warping gravity as a lens to image the surface of exoplanets in astonishing detail


The bluish ring is a distant galaxy whose image has been magnified and
warped by the gravity of a reddish galaxy in the foreground
Credit: ESA/Hubble & NASA Wikimedia

Within just a few years, astronomers may at last find a planet that shows signs of life as we know it, in the form of atmospheric gases that betray signs of biological activity. This would be a transformational event for our civilization. But, what would we do next? How could we explore this alien world? With the current state of our technology, sending a robotic spacecraft to visit a planet that is light-years away is simply not possible. And no telescope in existence or even in the design stage would be capable of imaging such a world except as a pinpoint of light—a single pixel in the most advanced detector, which would give no details at all about what the surface of this exoplanet actually looks like.

That is true of human-built telescopes, at least. But Nature has gifted us with a powerful magnifying instrument that existed for billions of years before the human race evolved. It’s the Sun, whose intense gravity warps spacetime in its immediate neighborhood, bending the path of light rays passing nearby. In 1919, this light-bending was seen to alter the apparent positions of distant stars during a solar eclipse, vindicating Albert Einstein’s recently-published General Theory of Relativity. And in the 1930s, Einstein calculated that if two stars were lined up just right along our line of sight, the light-bending effect would allow the closer star to magnify the image of the more distant one.

Using galaxies and galaxy clusters rather than stars as the magnifiers, astronomers have used this so-called gravitational lensing effect to observe distant cosmic structures that would otherwise be too faint to see. But to date our Sun’s magnifying effects have scarcely been exploited. Soon, that could change. We have calculated that a modest telescope located approximately 50 billion miles from the Sun, at the focus of its lensing effect, could magnify the image of an exoplanet 100 light-years away by a factor of 100 billion.

The result would be more than a single pixel—it would be an image a thousand pixels wide. That’s vastly more detailed than pictures of Pluto taken with the Hubble Space Telescope prior to the New Horizons mission—detailed enough to see surface features such as continents, oceans, mountain ranges and deserts. To get this resolution without the magnifying power of the Sun, we calculate that you would need a telescope with a diameter of about 75,000 kilometers, or about six times the diameter of the Earth. This is, to put it mildly, impractical.

It sounds simple enough, but such a mission would face significant challenges. To start with, it would have to stare directly at the Sun. Therefore, the small space telescope would require the ability to block most of the Sun’s light. This can be done with a help of an onboard instrument called a coronagraph, which creates what amounts to an artificial solar eclipse. No existing coronagraph could do this (they are mostly used to block the pinpoint light of distant stars, not the blazing close-up glare of the Sun).

But given the rapid development of coronagraphic technology, such capabilities are probably not far off. Alternatively, the spacecraft could use a starshade—an independent spacecraft, positioned precisely to block the Sun. These are also currently in development. Starlight from the parent star, which causes trouble for more conventional planet-imaging schemes, will be a factor of 10 million times weaker than light from the planet and much dimmer than our own Sun’s corona.

The image seen by our space telescope will not look like a planet, however. It will look like a ring of light surrounding the blotted-out Sun—and that ring (known as an Einstein ring) will contain the reflected light not of the entire planet, but only from a small region on its surface. So imaging the planet’s entire starlit surface would be done on a pixel-by-pixel basis, by moving the spacecraft in a spiral fashion as it slowly corkscrews its way around the Sun’s far-distant gravitational focus. At each position in the spiral, the telescope would sample slightly different Einstein rings containing amplified images of different areas of the remote planet’s surface.

Although very powerful, the Sun is not a very good lens in a traditional sense; its magnified images will be highly blurred, with any given pixel containing light reflected from adjacent regions on the surface of the exoplanet. This type of aberration would require correction through modern image reconstruction techniques. Fortunately, the planet’s rotation would provide periodic changes that would be helpful for guiding that reconstruction.

Clearly, this mission is daunting in every area of mission design and operations. Direct imaging of an exoplanet, in general, requires overcoming several key technological challenges. However, most of these challenges could be addressed with already existing capabilities, and engineers are making great progress in small-spacecraft development. To reach the necessary distances, our mission would employ a Jupiter flyby followed by a low-perihelion escape maneuver near the Sun.

Alternatively, propellant-free propulsion techniques such as sunlight-reflecting “solar sails” could allow high escape velocities with perihelia of 20 solar radii, but these would require sail area-to-mass ratios larger than the current state-of-the-art. Either approach could reach the solar lens’ focal line in 25-30 years. Although it seems feasible, the engineering aspects of building an astronomical facility on scales this large are still unexplored; only recently did we begin to consider such concepts.

While all currently envisioned NASA exoplanetary concepts aim at getting just a single pixel to study an exoplanet, a mission such as this opens a breathtaking possibility for direct megapixel high-resolution imaging and spectroscopy of a potentially habitable exoplanet at a distance of up to 100 light years, with resolution of a few kilometers on its surface over a broad range of wavelengths. This could provide a powerful diagnostic for the atmosphere, surface material characterization and biological processes on a distant twin or close sibling of our own familiar Earth. This would be the next major step, possibly the biggest step in the 21st century for exoplanet exploration.


TOPICS: Astronomy; Science
KEYWORDS: gravitational; lensing; sun; telescope

1 posted on 05/31/2017 2:31:53 AM PDT by LibWhacker
[ Post Reply | Private Reply | View Replies]

To: LibWhacker
We have calculated that a modest telescope located approximately 50 billion miles from the Sun

Since the Earth is 1 AU (93 million miles) from the Sun, how they gonna get a telescope out that far? And how they gonna get data from it?

2 posted on 05/31/2017 4:43:11 AM PDT by rjsimmon (The Tree of Liberty Thirsts)
[ Post Reply | Private Reply | To 1 | View Replies]

To: rjsimmon
"how they gonna get a telescope out that far?"

That would be child's play with the perfection of the new Covfefe drive.

3 posted on 05/31/2017 5:19:45 AM PDT by Da Bilge Troll (Defeatism is not a winning strategy!)
[ Post Reply | Private Reply | To 2 | View Replies]

To: LibWhacker
"astronomers may at last find a planet that shows signs of life as we know it, in the form of atmospheric gases that betray signs of biological activity."

Really? They say that?

Pray tell, which gasses are these?

ML/NJ

4 posted on 05/31/2017 5:34:55 AM PDT by ml/nj
[ Post Reply | Private Reply | To 1 | View Replies]

To: rjsimmon

Voyager 1, launched in 1977, is only 12 billion miles now.


5 posted on 05/31/2017 6:05:05 AM PDT by ctdonath2 (It's not "white privilege", it's "Puritan work ethic". Behavior begets consequences.)
[ Post Reply | Private Reply | To 2 | View Replies]

To: rjsimmon
Next generation rockets boosted by gravitational assists from two or three planets. Maybe even complementary ion propulsion. It's going to have to be faster than today's spacecraft, that's for sure, if we want to do it in a reasonable amount of time. But it's definitely doable.

My guess is that onboard power for heating, communications, computation, etc., will probably be supplied by rtgs in early missions, a technology we're already quite good at.

6 posted on 05/31/2017 11:32:10 AM PDT by LibWhacker
[ Post Reply | Private Reply | To 2 | View Replies]

To: ml/nj
Good question! I'll let NASA answer it for you: https://exoplanets.nasa.gov/the-search-for-life/life-signs/.

It's truly fascinating to take an astronomy course and be exposed to all these "tricks of the trade" for the first time. It's mind boggling how much one can learn by studying a weak little trickle of photons coming in from a distant star. But it shouldn't surprise us; humans are very smart and have been working on these astronomical problems for thousands of years. And it's incredible how much they've figured out!

7 posted on 05/31/2017 11:55:06 AM PDT by LibWhacker
[ Post Reply | Private Reply | To 4 | View Replies]

To: LibWhacker

To get this resolution without the magnifying power of the Sun, we calculate that you would need a telescope with a diameter of about 75,000 kilometers, or about six times the diameter of the Earth. This is, to put it mildly, impractical.

...

No it wouldn’t.

https://en.wikipedia.org/wiki/Astronomical_optical_interferometry

Using the sun for gravitational lensing would be far more impractical.


8 posted on 05/31/2017 12:10:34 PM PDT by Moonman62 (Make America Great Again!)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Moonman62
I've been a huge proponent for space-based optical interferometry for a long time. Ever since I first heard about interferometry.

For instance, why not build an interferometer the size of the solar system? Imagine what we could see with that baby!

But I've been told there are problems that will need to be overcome. Cost is a big problem, but one article I read said flying such a large formation of telescopes in rock solid unison down to a fraction of a wavelength is a big problem.

Not sure why, myself. I mean, if you look at a parabolic mirror, it doesn't matter which precise bits are present, only that they are present and span a great distance, and any variance could, it seems to me in principle, be fixed with signal processing and correction. Does that sound feasible to you?

Anyway, I'm on board with space-based optical interferometry!

9 posted on 05/31/2017 1:11:07 PM PDT by LibWhacker
[ Post Reply | Private Reply | To 8 | View Replies]

To: LibWhacker
It's truly fascinating to take an astronomy course

I'm just guessing that I've taken more "astronomy" courses than you, your smarmy attitude notwithstanding.

I ask what gasses there were that betray signs of biological activity, and you want me to go off to some government link.

Simple question. Name two such gasses, and whether the quantities were measured and relevant.

ML/NJ

10 posted on 05/31/2017 2:35:20 PM PDT by ml/nj
[ Post Reply | Private Reply | To 7 | View Replies]

To: ml/nj

Smarmy? FU. I was just trying to be helpful. Look it up yourself, genius. Or go back and review some of those many, many “astronomy” courses you’ve taken (yeah, right, lol).


11 posted on 05/31/2017 2:49:20 PM PDT by LibWhacker
[ Post Reply | Private Reply | To 10 | View Replies]

To: LibWhacker
“astronomy” courses you’ve taken (yeah, right, lol). Wanna bet genius? (Oh, wait. Freeprers who cite government websites probably aren't geniuses.)

I'll let any Freepers who want to vote on what my raised seal college transcript has to say about the matter, decide. C note. Put up, or shut up.

ML/NJ

12 posted on 05/31/2017 3:18:36 PM PDT by ml/nj
[ Post Reply | Private Reply | To 11 | View Replies]

To: ml/nj

Get lost, loser. I have no obligation or desire to help your dumb a$$ understand anything. Stay out of the threads I start from now on. I’ll do you the same favor.


13 posted on 05/31/2017 3:29:43 PM PDT by LibWhacker
[ Post Reply | Private Reply | To 12 | View Replies]

To: LibWhacker
Stay out of the threads I start from now on.

Actually, I think I'll look for them and humiliate you again when I think it makes sense.

ML/NJ

14 posted on 05/31/2017 3:49:01 PM PDT by ml/nj
[ Post Reply | Private Reply | To 13 | View Replies]

To: ml/nj

Have some respect for JimRob’s website. I don’t like you and you don’t like, but let this little spat go.


15 posted on 05/31/2017 3:59:27 PM PDT by LibWhacker
[ Post Reply | Private Reply | To 14 | View Replies]

To: LibWhacker
The site must be purified.

People who avoid the Confederacy are suspect IMHO.

ML/NJ

16 posted on 05/31/2017 4:30:39 PM PDT by ml/nj
[ Post Reply | Private Reply | To 15 | View Replies]

To: LibWhacker

Not to the 50 Billion mile mark. It would take close to 100 years to put something that far out. Next and what is quite possibly the killer in this story is retrieving that data. At the speed of light, it would take 75 days to receive the signal. The amount of energy to transmit reliable intelligence across that distance would be immense. Bottom line, what could we gain by such a venture? Since it is, for all practical purposes, impossible for man to sojourn to some distant (potentially) habitable planet, the only reason would be to get the ultimate snapshot.


17 posted on 06/01/2017 4:54:52 AM PDT by rjsimmon (The Tree of Liberty Thirsts)
[ Post Reply | Private Reply | To 6 | View Replies]

To: Moonman62

18 posted on 06/01/2017 12:58:26 PM PDT by Svartalfiar
[ Post Reply | Private Reply | To 8 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson