Posted on 11/25/2009 12:25:53 AM PST by Daffynition
Was Newton right and Einstein wrong? It seems that unzipping the fabric of spacetime and harking back to 19th-century notions of time could lead to a theory of quantum gravity.
Physicists have struggled to marry quantum mechanics with gravity for decades. In contrast, the other forces of nature have obediently fallen into line. For instance, the electromagnetic force can be described quantum-mechanically by the motion of photons. Try and work out the gravitational force between two objects in terms of a quantum graviton, however, and you quickly run into troublethe answer to every calculation is infinity. But now Petr Hořava, a physicist at the University of California, Berkeley, thinks he understands the problem. Its all, he says, a matter of time.
More specifically, the problem is the way that time is tied up with space in Einsteins theory of gravity: general relativity. Einstein famously overturned the Newtonian notion that time is absolutesteadily ticking away in the background. Instead he argued that time is another dimension, woven together with space to form a malleable fabric that is distorted by matter. The snag is that in quantum mechanics, time retains its Newtonian aloofness, providing the stage against which matter dances but never being affected by its presence. These two conceptions of time dont gel.
The solution, Hořava says, is to snip threads that bind time to space at very high energies, such as those found in the early universe where quantum gravity rules. Im going back to Newtons idea that time and space are not equivalent, Hořava says. At low energies, general relativity emerges from this underlying framework, and the fabric of spacetime restitches, he explains.
Hořava likens this emergence to the way some exotic substances change phase. For instance, at low temperatures liquid heliums properties change dramatically, becoming a superfluid that can overcome friction. In fact, he has co-opted the mathematics of exotic phase transitions to build his theory of gravity. So far it seems to be working: the infinities that plague other theories of quantum gravity have been tamed, and the theory spits out a well-behaved graviton. It also seems to match with computer simulations of quantum gravity.
Hořavas theory has been generating excitement since he proposed it in January, and physicists met to discuss it at a meeting in November at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. In particular, physicists have been checking if the model correctly describes the universe we see today. General relativity scored a knockout blow when Einstein predicted the motion of Mercury with greater accuracy than Newtons theory of gravity could.
Can Hořřava gravity claim the same success? The first tentative answers coming in say yes. Francisco Lobo, now at the University of Lisbon, and his colleagues have found a good match with the movement of planets.
Others have made even bolder claims for Hořava gravity, especially when it comes to explaining cosmic conundrums such as the singularity of the big bang, where the laws of physics break down. If Hořava gravity is true, argues cosmologist Robert Brandenberger of McGill University in a paper published in the August Physical Review D, then the universe didnt bangit bounced. A universe filled with matter will contract down to a smallbut finitesize and then bounce out again, giving us the expanding cosmos we see today, he says. Brandenbergers calculations show that ripples produced by the bounce match those already detected by satellites measuring the cosmic microwave background, and he is now looking for signatures that could distinguish the bounce from the big bang scenario.
Hořava gravity may also create the illusion of dark matter, says cosmologist Shinji Mukohyama of Tokyo University. In the September Physical Review D, he explains that in certain circumstances Hořavas graviton fluctuates as it interacts with normal matter, making gravity pull a bit more strongly than expected in general relativity. The effect could make galaxies appear to contain more matter than can be seen. If thats not enough, cosmologist Mu-In Park of Chonbuk National University in South Korea believes that Hořava gravity may also be behind the accelerated expansion of the universe, currently attributed to a mysterious dark energy. One of the leading explanations for its origin is that empty space contains some intrinsic energy that pushes the universe outward. This intrinsic energy cannot be accounted for by general relativity but pops naturally out of the equations of Hořava gravity, according to Park.
Hořavas theory, however, is far from perfect. Diego Blas, a quantum gravity researcher at the Swiss Federal Institute of Technology (EPFL) in Lausanne has found a hidden sickness in the theory when double-checking calculations for the solar system. Most physicists examined ideal cases, assuming, for instance, that Earth and the sun are spheres, Blas explains: We checked the more realistic case, where the sun is almost a sphere, but not quite. General relativity pretty much gives the same answer in both the scenarios. But in Hořava gravity, the realistic case gives a wildly different result.
Along with Sergei M. Sibiryakov, also at EPFL, and Oriol Pujolas of CERN near Geneva, Blas has reformulated Hořava gravity to bring it back into line with general relativity. Sibiryakov presented the groups model in September at a meeting in Talloires, France.
Hořava welcomes the modifications. When I proposed this, I didnt claim I had the final theory, he says. I want other people to examine it and improve it.
Gia Dvali, a quantum gravity expert at CERN, remains cautious. A few years ago he tried a similar trick, breaking apart space and time in an attempt to explain dark energy. But he abandoned his model because it allowed information to be communicated faster than the speed of light.
My intuition is that any such models will have unwanted side effects, Dvali thinks. But if they find a version that doesnt, then that theory must be taken very seriously.
Reminds me of the good olde days of Scientific American.
A 2D world looks different from a 3D window. You have to have cubes to make tesseracts. 6D dogs don’t pee on 7D hydrants, but watch out for those 5D ones.
Neither of your posts answers (as near as I can tell) the question I asked.
Does this new information make it any more likely that we will have interstellar travel in our lifetimes?
Nixie tube displays require an additional step, however. Sorry, a "trade secret" that. -:}}
If his mother would have had an abortion he would have been a canceled Czech.
That is a fascinating theory. And it does make sense. Going to be interesting to see where it goes from here.
ROTFLMAO!
Thats priceless! LOL D’oh! lol
Thats a really interesting way to put it! Well said!
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.