Posted on 03/05/2005 10:02:50 AM PST by Arkie2
Using a technique employed by astronomers to determine stellar surface temperatures, chemists at the University of Illinois at Urbana-Champaign have measured the temperature inside a single, acoustically driven collapsing bubble.
Their results seem out of this world.
"When bubbles in a liquid get compressed, the insides get hot -- very hot," said Ken Suslick, the Marvin T. Schmidt Professor of Chemistry at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology. "Nobody has been able to measure the temperature inside a single collapsing bubble before. The temperature we measured -- about 20,000 degrees Kelvin -- is four times hotter than the surface of our sun."
This result, reported in the March 3 issue of the journal Nature by Suslick and graduate student David Flannigan, already has raised eyebrows. Their work is funded by the National Science Foundation and the Defense Advanced Research Projects Agency.
Sonoluminescence arises from acoustic cavitation -- the formation, growth and implosion of small gas bubbles in a liquid blasted with sound waves above 18,000 cycles per second. The collapse of these bubbles generates intense local heating. By looking at the spectra of light emitted from these hot spots, scientists can determine the temperature in the same manner that astronomers measure the temperatures of stars.
By substituting concentrated sulfuric acid for the water used in previous measurements, Suslick and Flannigan boosted the brilliance of the spectra nearly 3,000 times. The bubble can be seen glowing even in a brightly lit room. This allowed the researchers to measure the otherwise faint emission from a single bubble.
"It is not surprising that the temperature within a single bubble exceeds that found within a bubble trapped in a cloud," Suslick said. "In a cloud, the bubbles interact, so the collapse isn't as efficient as in an isolated bubble."
What is surprising, however, is the extremely high temperature the scientists measured. "At 20,000 degrees Kelvin, this emission originates from the plasma formed by collisions of atoms and molecules with high-energy particles," Suslick said. "And, just as you can't see inside a star, we're only seeing emission from the surface of the optically opaque plasma." Plasmas are the ionized gases formed only at truly high energies.
The core of the collapsing bubble must be even hotter than the surface. In fact, the extreme conditions present during single-bubble compression have been predicted by others to produce neutrons from inertial confinement fusion.
"We used to talk about the bubble forming a hot spot in an otherwise cold liquid," Suslick said. "What we know now is that inside the bubble there is an even hotter spot, and outside of that core we are seeing emission from a plasma."
You want fries with that?
then how does my cokey get so cold?
The 20,000 degree temperature gives the characteristic blue-violet color.
Yes, that is much hotter than the surface of the sun.
But it is much less than the fusion temperature at the center of the sun. (by a factor of several hundred).
Is this that million dollar experiment that explains the life long mystery of ice melting?
lol
Looks like there could be possiblities for a bubble gun reactor.
The next step will be to try and measure the temp in the interior of the bubble if that's feasible. One researcher has reported detecting neutrons as a result of his experiments but there were several problems with the way he conducted them and a BBC special a few weeks ago purported to debunk his results. In any case, these experiments are revealing new information. It will be interesting to follow the results.
Since when is 20,000° Kelvin considered "cold"?
When you're talking about fusion it's definitely cold.
Well, you can -- but it stings a bit.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.