Posted on 04/06/2021 11:33:29 AM PDT by Red Badger
Picture the street outside your home. Now erase the power lines. Imagine interstate highways without the unsightly cable towers that dot the expansive United States landscape. This could be the wireless future of energy if a partnership between New Zealand’s government and a startup called Emrod works out—and it all dates back to the wildest dreams of Nikola Tesla.
Wireless electricity sounds like science fiction, but the technology is already realized and primed for a utility-scale case study. And in this first-of-its-kind pilot program, Powerco—New Zealand’s second-largest electricity distributor—will test Emrod technology beginning in 2021.
“IT SOUNDS FUTURISTIC AND FANTASTIC BUT HAS BEEN AN ITERATIVE PROCESS SINCE TESLA.”
The companies plan to deploy the prototype wireless energy infrastructure across a 130-foot expanse. To make it possible, Emrod uses rectifying antennas, a.k.a. “rectennas,” that pass microwaves of electricity from one waypoint to the next: a solution well-suited to New Zealand’s mountainous terrain. Specialized square elements are mounted on intervening poles to act as pass-through points that keep the electricity humming along, and a broader surface area “catches” the entire wave, so to speak.
“We’ve developed a technology for long-range wireless power transmission,” says Emrod founder Greg Kushnir. “The technology itself has been around for quite a while. It sounds futuristic and fantastic but has been an iterative process since Tesla.”
The link to Nikola Tesla, Kushnir admits, is more of an imaginative, feel-good tale than a true genealogy. Tesla considered wireless power in the 1890s, as he labored over his breakthrough “Tesla coil” transformer circuit that generated alternating current electricity, but he couldn’t prove that he could control a beam of electricity across long distances. “The sheer fact that he could imagine it is remarkable, but the sort of technology he was looking to apply wouldn’t have worked,” Kushnir says.
Emrod, by contrast, can keep the beam of electricity tight and focused with two technologies. The first is transmission-related: Small radio elements and single wave patterns create a collimated beam, which means that the rays are aligned in parallel, and will not spread much as they propagate. Second, Emrod uses engineered metamaterials with tiny patterns that effectively interact with those radio waves.
This content is imported from YouTube. You may be able to find the same content in another format, or you may be able to find more information, at their web site.
Emrod’s wireless antennas are a medium, like a cable, meaning that their task is to simply connect an electrical supply to customers. Kushnir envisions placing Emrod technology on difficult terrain that links with the sunniest, windiest, or most hydro-friendly points on Earth as these often rural places have the widest gap in electrification.
By eliminating the need for long stretches of traditional copper wiring, Emrod says it can bring power to these regions, which can’t afford the kind of infrastructure that supports the power grid. There could be positive environmental ramifications to this, as well, since many sites that don’t have access to electricity end up leaning on diesel generators for energy.
There are even opportunities to support offshore wind and solar farms, Kushnir says, because the current friction point for those forms of renewable energy come down to the cost of transmission. In the Cook Strait—which connects the North and South Islands of New Zealand—offshore wind farms require expensive underwater cables, for instance.
At this point, Kushnir has enough corporate buy-in to take the next regulatory steps, and begin propagating Emrod’s technology. The real challenge, he says, will be to reassure and educate the public.
“We anticipate a lot of pushback similar to the stuff we’ve been seeing with 5G,” he says. “People push back on additional radiation around them, and it’s completely understandable.” But luckily, he says, Emrod’s controlled beam sheds no radiation. It’s not a “spray” pattern like a cell phone antenna.
So if all goes well during the New Zealand pilot program in early 2021, wireless energy could quite literally be on the horizon in the U.S., too. As for when? That’s anybody’s guess.
IMAGE COURTESY OF EMROD
To wirelessly conduct energy, Emrod generates electricity in a tight and focused beam in the non-ionizing Industrial, Scientific, and Medical band of the electromagnetic spectrum—the portion of the radio band that corresponds to Wi-Fi and Bluetooth frequencies.
From there, a transmitting antenna sends the power through various relay points to a “rectenna” that can safely transport the waves in the same frequency range as the microwave oven in your home. Meanwhile, tiny lasers monitor the rectennas to sense any obstructions between relay points. That way, there is no outside radiation, and no birds are harmed in this transfer of power.
—Courtney Linder
For a long time I’ve seen this as something coming for in the home, but not the long distance stuff. The home one depends on a short range so you don’t electrocute people. That is, you can walk through the field, but beyond a certain distance, if the signal from the source is strong enough to still exist, you’ll be zapped.
Signal strength diminishes as the square of the distance.............
So, if this is pointed at a person, . . .
Will it be like a Star Trek Phaser?
No, it will be closer to setting your beeber to stun.
I refuse to mention anything related to bowel movements while transmitting power...
I know there are wireless chargers, but how much energy is lost via transmission? No matter how focused the beam, not all of it is going to reach the receiver.
Fry your brains.
Five years from now we’ll be joking with the Kiwis asking, “got rect?”
Will it be tested right next to Emrod’s CEO’s home?
Hmmmm. My pacemaker will go from 70 BPM to 60 HZ.
in Florida, unsightly poles and lines was solved by placing them below ground in most areas.
no fried birds and weathers hurricanes, tornadoes, fires, and floods very well.
Heavy snow? Fog?
Caroline Delbert, the authoress, wrote:
“microwaves of electricity”
“pass-through points that keep the electricity humming along”
“a broader surface area ‘catches’ the entire wave, so to speak”
She must have slept through EE 101.
Who doesn’t think wireless electricity is the eventual goal of Musk’s StarLink?
+1
VERY lossy.
Then you get hot rain drops.
These invisible high-energy microwave wireless power conduits of the future, should sure work nicely with the proliferation of flying cars in the future.
At least in a Darwinian sense.
Didn’t Tesla invent this already?
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.