Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Happy Birthday, LHC: Here's to 10 Years of Atom Smashing at the Large Hadron Collider
Space.com ^ | Sept 11, 2018 | Don Lincoln, Senior Scientist, Fermi National Accelerator Laboratory; Adjunct Professor of Physics,

Posted on 09/13/2018 8:41:04 AM PDT by ETL

Ten years ago, the world's largest scientific instrument was turned on and the start of a research dynasty began.

On Sept. 10, 2008, a beam of protons was shot for the first time around the entire 16.5-mile-long (27 kilometers) ring of the Large Hadron Collider (LHC) — the world's largest and highest energy atom smasher ever constructed. Located at the CERN laboratory, just outside Geneva, Switzerland, the LHC was constructed to smash highly energetic beams of protons together at near the speed of light. The stated goal was to create and discover the Higgs boson, the last missing piece of the Standard Model, our best theory for the behavior of subatomic matter. But the goal was bigger than that. Really what we wanted to do was to discover something completely unexpected — so big and so new that it would mean we'd have to rewrite the textbooks.

And the LHC didn't turn on quietly. In the weeks and months prior, the press was jam-packed with breathless stories of fears that the LHC would make a black hole that would destroy the Earth. The media did a good job dispelling the lurid claims, but the story was simply too good to not print, even among the most responsible print, online and broadcast outlets.

The CERN laboratory where the LHC is housed decided to invite the press to see the inaugural beam of the LHC. The black hole frenzy ensured that the media showed up in a big way. BBC, CNN, Reuters and many dozen international media outlets were there for the festivities. Black holes aside, it was a dangerous choice from a PR point of view: Brand-new accelerators are finicky beasts, and the LHC was especially so. It consists of thousands of magnets and tens of thousands of power supplies, monitoring electronics, and more. The slightest mishap could have delayed, for days or weeks, the first successful circulation of beam.

[Photos: The World's Largest Atom Smasher (LHC)

There were some tense moments that morning. The first few attempts failed due to some rebellious power supplies. However, just shy of 10:30 a.m. local time, the accelerator operators successfully threaded a very low intensity beam of protons through the entire complex. Because the LHC is essentially two accelerators — to accommodate beams going in opposite directions — the next step was to guide a beam through the second set of beam pipes. That happened shortly after the first success. The world's media announced the technical accomplishment literally as it happened. Particle physics rarely gets that kind of media exposure.

Despite the worldwide excitement, what was accomplished on that day was relatively modest. Low energy, low intensity, beams from feeder accelerators had been injected into the LHC. The beams had cycled around the ring a couple of times, at low energy, meaning the lowest energy the LHC was designed for. The way the LHC works is it accepts a particle beam from smaller accelerators and then accelerates the beam to an energy over 15 times higher than it receives. On this first attempt, there was never any intent to accelerate the beam. Just getting it around the ring successfully was enough. 

In addition, the intensity of the beams was less than a ten-millionth of the design intensity. In particle beams, intensity is similar to brightness when one talks about light. The beams can be made more intense by adding more protons or focusing the beam to a smaller size. On that day, focusing was still a future goal and only a very few protons were put in the accelerator. And initially, the timing of the actual accelerator electronics wasn't quite right. So, there was clearly a way to go. 

But, no matter. It was exciting, and it was certainly an important stepping stone on the way to full operations. Corks were popped. Champagne was drunk. Backs were slapped and pictures were taken. It was a good day.

I wasn't at CERN for first beam. After all, my interest in the LHC program is to use it to smash high-energy particles, and everybody knew that no collisions would occur then. Instead, I was at Fermilab, America's flagship particle accelerator laboratory and the most impactful research institution to work on LHC data analysis, besides CERN itself. The two laboratories have a sibling relationship, and we cheer for each other when a technical hurdle is overcome. At Fermilab, we decided to host a pajama party for the scientists and local community on the night of Sept. 10. It was extraordinary. Hundreds of local people showed up at 2:00 a.m. and waited for the successful circulation of beam at 4:30 a.m. local time. I walked around, talking to members of the public, reporters who couldn't convince their editors to send them to Europe and other scientists. The cheers from the crowd were loud enough that I like to think they could hear them at CERN, 4,400 miles to the east.

Of course, the successes of the morning of Sept. 10, 2008, were very important, but they were just a step toward the desired outcome, which was to commission the most powerful particle accelerator on the planet. To do that, the 1,232 giant magnets surrounding the LHC needed to be put through their paces and tested at full electrical current. So, the CERN accelerator staff turned their attention to finishing that. And that's where things went awry.

On Sept. 22, the operators were shaking down the last set of magnets, when a faulty solder joint caused a copper busbar to overheat, causing it to melt, then arc, and then puncture the thermos bottle that held the liquid helium that allowed the magnets to withstand the ten thousand amperes of current that made the powerful magnetic fields possible. [Gallery: Search for the Higgs Boson at the LHC]

With that puncture, the helium was released at high pressure…forming a jet sufficiently strong to push a 35-ton magnet sideways by 18 inches and pull mounting brackets out of solid concrete. The helium was at minus 450 Fahrenheit and it cooled down the LHC tunnel for a mile surrounding the damage. Repairing the damage and adding additional fault protection equipment took over a year.

It was on Feb. 27, 2010, that the LHC accelerator staff were ready to try again. And, over the course of about an hour and a quarter, they repeated the exercise, again circulating beams in opposite directions. This time, the effort was attempted without first notifying the media. And it was on March 19 that the staff finally accelerated the beam to an energy 3.5 times higher than the previous world record accelerator, the Fermilab Tevatron.

I happened to be at CERN that day, and the achievement was accomplished in the wee hours just before dawn. I watched the monitors with colleagues and, when stable beam was declared, the champagne, back slapping and cheers happened again, this time without television cameras.

Since that day, the LHC has been simply a scientific phenom…delivering extraordinary beams to four detectors arrayed around the ring. The scientific output to date has been prodigious, with the two bigger experiments each publishing over 800 papers, and the entire research program publishing over 2,000.

The most impactful discovery in the past decade was the Higgs boson, the last missing piece of the Standard Model of particle physics. It was announced on July 4, 2012, again to a worldwide audience, with coverage on over a thousand television stations to a billion viewers. Again, the world shared the excitement of discovery. [6 Implications of Finding a Higgs Boson Particle]

And the future of the LHC is bright indeed. While we've successfully operated the facility for a decade now, the intent is to continue using the accelerator to make discoveries. Currently, the plan is to continue operations for at least the next two decades. In fact, at the end of 2018, it is estimated that the experiments at the LHC will have collected only 3 percent of the data that will be recorded over the facility's lifetime. At the end of 2018, the LHC will pause operations for two years for refurbishment and upgrades. In the spring of 2021, it will resume operations with much improved detectors.

It's not possible to know what scientific truths we'll uncover using the LHC. That's the thing about doing science…if we knew what we we'd discover, it wouldn't be called research. But the LHC is, without a doubt, an intellectual and technological jewel – an achievement of which researchers of yesteryear could only dream. The LHC can probe the smallest distance scales, the highest energies, and recreate conditions last common in the universe just a scant tenth of a trillionth of a second after the Big Bang. It's an instrument of exploration and discovery. And we're just getting started. It's going to be glorious.

Happy Birthday, LHC.


TOPICS: Chit/Chat; Science
KEYWORDS: cern; largehadroncollider; lhc; physics
Image result for Happy Birthday, LHC: Here's to 10 Years of Atom Smashing at the Large Hadron Collider
The Large Hadron Collider is the world's most powerful particle accelerator. In June 2015, the LHC was restarted at nearly twice the energy at which it operated
during its first run, which ended in 2013. Credit: CERN

Related image

1 posted on 09/13/2018 8:41:04 AM PDT by ETL
[ Post Reply | Private Reply | View Replies]

To: All

Thee are 3 or 4 interesting-looking short video clips at the link to go with the article.


2 posted on 09/13/2018 8:41:57 AM PDT by ETL (Obama-Hillary, REAL Russia collusion! Uranium-One Deal, Missile Defense, Iran Deal, Nukes: Click ETL)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ETL

In my mind the LHC has been a huge disappointment. It further confirmed the dominant Standard Model with the discovery of the Higgs Boson but so far no evidence of where to go beyond the Standard Model.


3 posted on 09/13/2018 8:46:50 AM PDT by C19fan
[ Post Reply | Private Reply | To 1 | View Replies]

To: All

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator.

It first started up on 10 September 2008, and remains the latest addition to CERN’s accelerator complex.

The LHC consists of a 27-kilometre ring of superconducting magnets with a number of accelerating structures to boost the energy of the particles along the way.

Inside the accelerator, two high-energy particle beams travel at close to the speed of light before they are made to collide. The beams travel in opposite directions in separate beam pipes – two tubes kept at ultrahigh vacuum.

They are guided around the accelerator ring by a strong magnetic field maintained by superconducting electromagnets. The electromagnets are built from coils of special electric cable that operates in a superconducting state, efficiently conducting electricity without resistance or loss of energy. This requires chilling the magnets to -271.3°C – a temperature colder than outer space. For this reason, much of the accelerator is connected to a distribution system of liquid helium, which cools the magnets, as well as to other supply services.

Thousands of magnets of different varieties and sizes are used to direct the beams around the accelerator. These include 1232 dipole magnets 15 metres in length which bend the beams, and 392 quadrupole magnets, each 5–7 metres long, which focus the beams.

Just prior to collision, another type of magnet is used to “squeeze” the particles closer together to increase the chances of collisions. The particles are so tiny that the task of making them collide is akin to firing two needles 10 kilometres apart with such precision that they meet halfway.

All the controls for the accelerator, its services and technical infrastructure are housed under one roof at the CERN Control Centre. From here, the beams inside the LHC are made to collide at four locations around the accelerator ring, corresponding to the positions of four particle detectors – ATLAS, CMS, ALICE and LHCb.

https://home.cern/topics/large-hadron-collider


4 posted on 09/13/2018 9:05:29 AM PDT by ETL (Obama-Hillary, REAL Russia collusion! Uranium-One Deal, Missile Defense, Iran Deal, Nukes: Click ETL)
[ Post Reply | Private Reply | To 1 | View Replies]

To: C19fan

In my mind the LHC has been a huge disappointment. It further confirmed the dominant Standard Model with the discovery of the Higgs Boson but so far no evidence of where to go beyond the Standard Model.

...

But the knowledge that the Standard Model works better than anybody thought it would is progress.


5 posted on 09/13/2018 9:09:15 AM PDT by Moonman62 (Give a man a fish and he'll be a Democrat. Teach a man to fish and he'll be a responsible citizen.)
[ Post Reply | Private Reply | To 3 | View Replies]

To: All

Particle accelerators

At present the highest energy accelerators are all circular colliders, but both hadron accelerators and electron accelerators are running into limits. Higher energy hadron and ion cyclic accelerators will require accelerator tunnels of larger physical size due to the increased beam rigidity.

For cyclic electron accelerators, a limit on practical bend radius is placed by synchrotron radiation losses and the next generation will probably be linear accelerators 10 times the current length. An example of such a next generation electron accelerator is the proposed 40 km long International Linear Collider.

It is believed that plasma wakefield acceleration in the form of electron-beam ‘afterburners’ and standalone laser pulsers might be able to provide dramatic increases in efficiency over RF accelerators within two to three decades. In plasma wakefield accelerators, the beam cavity is filled with a plasma (rather than vacuum). A short pulse of electrons or laser light either constitutes or immediately precedes the particles that are being accelerated. The pulse disrupts the plasma, causing the charged particles in the plasma to integrate into and move toward the rear of the bunch of particles that are being accelerated. This process transfers energy to the particle bunch, accelerating it further, and continues as long as the pulse is coherent.[24]

Energy gradients as steep as 200 GeV/m have been achieved over millimeter-scale distances using laser pulsers[25] and gradients approaching 1 GeV/m are being produced on the multi-centimeter-scale with electron-beam systems, in contrast to a limit of about 0.1 GeV/m for radio-frequency acceleration alone. Existing electron accelerators such as SLAC could use electron-beam afterburners to greatly increase the energy of their particle beams, at the cost of beam intensity.

Electron systems in general can provide tightly collimated, reliable beams; laser systems may offer more power and compactness. Thus, plasma wakefield accelerators could be used – if technical issues can be resolved – to both increase the maximum energy of the largest accelerators and to bring high energies into university laboratories and medical centres.

Higher than 0.25 GeV/m gradients have been achieved by a dielectric laser accelerator, which may present another viable approach to building compact high-energy accelerators.[26]

https://en.wikipedia.org/wiki/Particle_accelerator#Higher_energies

6 posted on 09/13/2018 9:13:23 AM PDT by ETL (Obama-Hillary, REAL Russia collusion! Uranium-One Deal, Missile Defense, Iran Deal, Nukes: Click ETL)
[ Post Reply | Private Reply | To 1 | View Replies]

To: All; C19fan

5 Discoveries Made by the Large Hadron Collider (So Far)

https://science.howstuffworks.com/5-discoveries-made-by-the-large-hadron-collider-so-far-.htm


7 posted on 09/13/2018 9:17:21 AM PDT by ETL (Obama-Hillary, REAL Russia collusion! Uranium-One Deal, Missile Defense, Iran Deal, Nukes: Click ETL)
[ Post Reply | Private Reply | To 3 | View Replies]

To: ETL

Have fun with this one on dark things happening at CERN:

https://www.youtube.com/watch?v=M5cmp5wdKbM


8 posted on 09/13/2018 9:20:09 AM PDT by Shark24
[ Post Reply | Private Reply | To 1 | View Replies]

To: ETL

Just have to post this, the LHC rap.
https://www.bing.com/videos/search?q=larg+hadron+rap&qpvt=larg+hadron+rap&view=detail&mid=EC0992ED1E5D5C9E21BEEC0992ED1E5D5C9E21BE&&FORM=VRDGAR


9 posted on 09/13/2018 9:26:09 AM PDT by tet68 ( " We would not die in that man's company, that fears his fellowship to die with us...." Henry V.)
[ Post Reply | Private Reply | To 6 | View Replies]

To: ETL

How much did it cost us, and has it paid for itself?


10 posted on 09/13/2018 9:27:51 AM PDT by aimhigh (1 John 3:23)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ETL
And shortly after the LCH went live, we got Obama. I still think the LHC moved us into an alternate universe.

Yes, I'm kidding.

Maybe.

11 posted on 09/13/2018 9:28:19 AM PDT by IYAS9YAS (There are two kinds of people: Those who can extrapolate from incomplete data.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ETL

This the place where they are gonna make a Black Hole that’s gonna make us all disappear in a blink of an eye ??


12 posted on 09/13/2018 9:37:40 AM PDT by litehaus (A memory toooo long.............)
[ Post Reply | Private Reply | To 1 | View Replies]

To: litehaus

Well at least we’ll know who to blame if that happens.


13 posted on 09/13/2018 9:46:06 AM PDT by sanjuanbob
[ Post Reply | Private Reply | To 12 | View Replies]

To: ETL

Would have been here in the USA, in Texas. But Congress killed it. Need to waste money on Pakistan, Crapistan, illegal alien welfare, lesbian studies, mating habits of gay tree frogs... etc.


14 posted on 09/13/2018 9:59:03 AM PDT by DesertRhino (Dog is man's best friend, and moslems hate dogs. Add that up. ....)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Shark24

Nothing good can come from people running this that would have the opening ceremony they had. Very disturbing.


15 posted on 09/13/2018 10:35:45 AM PDT by MagnoliaB (You can't always get what you want but if you try sometime you might find, you get what you need.)
[ Post Reply | Private Reply | To 8 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson