Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Newton's Constant -- Not So Constant?
Newswise ^ | 5/8/2002 | Mike Martin

Posted on 05/08/2002 7:29:49 AM PDT by Nebullis

CAMBRIDGE, Mass. May 3 (UPI) -- A Russian physicist at MIT -- the Massachusetts Institute of Technology -- has announced experimental data that may topple one of science's most cherished dogmas -- that Newton's constant of gravitation, famously symbolized by a large "G," remains constant wherever, whenever and however it is measured.

"My colleagues and I have successfully experimentally demonstrated that the force of gravitation between two test bodies varies with their orientation in space, relative to a system of distant stars," Mikhail Gershteyn, a visiting scientist at the MIT Plasma Science and Fusion Center, told United Press International from Cambridge.

The idea that forces on bodies may vary relative to the orientation of distant stars has a powerful historical precedent in "Mach's Principle," a term Einstein coined in 1918 for the theory that eventually led him to his biggest breakthrough -- general relativity.

Swing a bucket of water at the end of rope and centrifugal forces pull it up and away. These forces result from the combined gravitational pull of all the distant stars and planets, Austrian physicist Ernst Mach wrote. Any change in the orientation of heavenly bodies would affect forces on matter everywhere, so powerful is their combined effect. The idea that G may change with respect to the way a body is positioned relative to the rest of the universe is simply an example of Mach's adage: matter out there affects forces right here.

Newton's gravitational constant G "changes with the orientation of test masses by at least 0.054 percent," according to Gershteyn's experiments, a remarkable and unprecedented finding that has landed his paper on the subject in the June issue of the journal Gravitation and Cosmology.

"The fact that G varies depending on orientation of the two gravitating bodies relative to a system of fixed stars is a direct challenge to Newton's Universal Law of Gravitation," Gershteyn told UPI. "The existence of such an effect requires a radically new theory of gravitation, because the magnitude of this effect dwarfs any of Einstein's corrections to Newtonian gravity."

Isaac Newton first described G in 1687 as a fundamental component of his universal law of gravity. Two masses, Newton said, attract one another with a force proportional to their mass that falls off rapidly as the bodies move farther and farther apart. Albert Einstein later used G in his own field equations that fine-tuned Newton's original laws.

The constant G puts precise limits on gravity's attractive force and appears in equations that describe any gravitational field, whether the field is between planets, stars, galaxies, microscopic particles or rays of light. Centuries of measurement have firmly fixed the value of G at 6.673 x 10 raised to the power minus 11 cubic meters per kilogram per square second.

If G varies under any circumstances, scientists would have to rewrite virtually every physical law and a long-accepted feature of the Universe -- isotropy, or the condition that a body's physical properties are independent of its orientation in space.

"Gershteyn and his coworkers lay an extraordinary and very interesting claim which -- if proven true -- would change our view of the universe," Lev Tsimring, a research physicist with the Institute for Nonlinear Science at the University of California San Diego, told UPI. "In a well-controlled experiment, the authors proposed to measure the gravitational force between two bodies with respect to the orientation of the experimental setup to distant stars," Tsimring explained. The experiment, he said, would seek to detect gravitational anisotropy -- the condition that the attractive force between bodies would vary with respect to their spatial orientation, not their separating distance.

"The latest paper by the authors -- in collaboration with an experimentalist who is a well-respected specialist in precisely that kind of measurement -- provides strong evidence in favor of the validity of the author's original claim," Tsimring said.

Gravitation and Cosmology editor Kirill Bronnikov agreed.

"The evident merit of the paper by Mikhail Gershteyn et. al. is the information of a possible new effect, discovered experimentally -- the effect of anisotropy related to Newton's constant G," Bronnikov, told UPI from Moscow, Russia. "So far the possibility of such an effect has only been discussed theoretically."

"The authors of this paper make some extraordinary claims in a legitimate journal," George Spagna, chairperson of the physics department at Randolph-Macon College, told UPI from Ashland, Va. "But they do not provide enough of their data or theoretical justification. They must provide much more information to be convincing."

Other scientists will need to provide "more detailed and independent experiments to confirm and elaborate the experimental results obtained in Gershteyn's paper," Lev Tsimring told UPI. "I cannot exclude that there might be other ways of explaining this anisotropy within conventional theory, but I believe that Gershteyn's results are convincing."


TOPICS: Culture/Society
KEYWORDS:
Navigation: use the links below to view more comments.
first previous 1-2021-4041-6061-79 next last
To: SauronOfMordor
The change is rather large isn't it.
21 posted on 05/08/2002 9:56:06 AM PDT by Doctor Stochastic
[ Post Reply | Private Reply | To 19 | View Replies]

To: SauronOfMordor
Gershteyn Link
22 posted on 05/08/2002 10:01:30 AM PDT by Doctor Stochastic
[ Post Reply | Private Reply | To 19 | View Replies]

To: Nebullis
"My colleagues and I have successfully experimentally demonstrated that the force of gravitation between two test bodies varies with their orientation in space, relative to a system of distant stars,"

The astrology nuts will have a field day with this one.

23 posted on 05/08/2002 10:04:20 AM PDT by Harrison Bergeron
[ Post Reply | Private Reply | To 1 | View Replies]

To: steve-b; Physicist
I was trying to explain what I know of relativity to a buddy recently. In particular, I was explaining length contraction and how this is not a perceived effect but a real one. And I got to thinking about the contraction of a rotating spherical body as it nears relativistic speeds. Contraction along the axis of travel is one thing, but when the contracted body is rotating so that its contracted part is changing seems really bizarre, although it makes perfect sense mathematically ...
24 posted on 05/08/2002 10:06:11 AM PDT by KayEyeDoubleDee
[ Post Reply | Private Reply | To 20 | View Replies]

To: Louis Jones
Perhaps.

Of course this must eventually lead up to the G-String Theory which covers, well, not much.

25 posted on 05/08/2002 10:07:44 AM PDT by Eagle Eye
[ Post Reply | Private Reply | To 3 | View Replies]

To: Nebullis
Tin-foil hat time?
26 posted on 05/08/2002 10:10:11 AM PDT by RightWhale
[ Post Reply | Private Reply | To 1 | View Replies]

To: Harrison Bergeron
>The astrology nuts will have a field day with this one.

Well, a famous "remote viewer" (an actual participant in the Army's real Stargate program) has done a pretty comprehensive book about the topic of remote viewing -- "Remote Viewing Secrets, A Handbook," by Joseph McMoneagle -- and I believe he devotes an entire section to studies which have shown a strange correlation between successful remote viewing trials and local sidereal time. Local sidereal time is based on the earth's orientiation in space (that is, earth's orientation to the backdrop of stars). This can be interpreted to be an indicator that all directions are not the same...

Mark W.

27 posted on 05/08/2002 10:14:29 AM PDT by MarkWar
[ Post Reply | Private Reply | To 23 | View Replies]

Gravity changes and is controllable...

The ether is real...

These two things will forever change our understanding of, and control of, existence...

28 posted on 05/08/2002 10:22:32 AM PDT by Ferris
[ Post Reply | Private Reply | To 25 | View Replies]

To: RightWhale
Not tin-foil hat time. This was published in a respectable journal. Now other scientists will try to duplicate the experiment and its results.

I find this very interesting not only because it could shake up the field of physics, but because it shows even more clearly how little we really understand about gravity. Heck, I think the article implies that General Relativity used G, which Einstien assumed was unaffected by orientation. It's so neat to think about how much could be shaken up by if this is proven out.

Tuor

29 posted on 05/08/2002 10:25:14 AM PDT by Tuor
[ Post Reply | Private Reply | To 26 | View Replies]

To: Ferris
Gravity changes and is controllable...

Goody! Let me know when they come out with that anti-gravity belt so's I can slip it on when I go to the Dr. I am getting so sick-and-tired of his constant carping about my weight.

30 posted on 05/08/2002 10:30:04 AM PDT by mc5cents
[ Post Reply | Private Reply | To 28 | View Replies]

To: Ferris
The ether is real...

Michelson-Morley and Maxwell notwithstanding, I presume. Be sure to post a link to your paper - I'll be able to tell my grandchildren that I traded thoughts with a Nobel Prize winner before he got all famous ;)

31 posted on 05/08/2002 10:44:22 AM PDT by general_re
[ Post Reply | Private Reply | To 28 | View Replies]

To: Tuor
This was published in a respectable journal

About 50-50. They publish a lot of mathematical "what-ifs", proposed alternative cosmologies.

32 posted on 05/08/2002 10:47:07 AM PDT by RightWhale
[ Post Reply | Private Reply | To 29 | View Replies]

To: Tuor
Why did this obscure piece find its way to a popular science news article? Because Gershteyn called a UPI reporter. Note that this is not an MIT release.
33 posted on 05/08/2002 10:53:42 AM PDT by Nebullis
[ Post Reply | Private Reply | To 29 | View Replies]

To: Nebullis
Well, it *is* interesting. Gravity is a sort of pet peeve of mine: it keeps us from getting into space in any meaningful way. Anything that might help open a door to overcoming or manipulating it to get us off the planet is very welcome to me.

At any rate, I imagine that a bevy of scientific experiments to test this is in the offing. It'll sink or swim the same way cold fusion did and in accordance with the methods of the scientific community.

I just hope some practical applications can someday be derived from this at some point...maybe through change in other physical theories dependant on G.

Tuor

34 posted on 05/08/2002 11:09:06 AM PDT by Tuor
[ Post Reply | Private Reply | To 33 | View Replies]

To: general_re
There's some very interesting reading right here...

Here's a paragraph, for example...

Existence cannot not exist. Moreover, no vacuum void of existence is possible. "Vacuums" of the matter field can exist as in outer space, in vacuumed-pumped containers, and in areas between electrons. But, all those volumes are filled with the unmovable, frictionless ether or existence field -- a uniform, continuous field of existence.[ 23 ]

35 posted on 05/08/2002 11:10:36 AM PDT by Ferris
[ Post Reply | Private Reply | To 31 | View Replies]

To: Louis Jones
Does this mean I can lose 0.054 percent of my total body weight just by standing in a different position?

Yep, and if you change positions frequently, you can lose 10lbs by summer ;-)

36 posted on 05/08/2002 12:10:48 PM PDT by varon
[ Post Reply | Private Reply | To 3 | View Replies]

To: Nebullis
I see no reason not to accept this result, pending confirmation by other groups. If I were a betting man, I'd say that this is likely to be overturned--extraordinary claims most commonly are--but in the meantime I'll assume it's correct.

It has been known for a few years that there is an anomalous anisotropy in the polarization of the cosmic microwave radiation background. My first test for this new result would be to see whether the two anisotropies line up. If they don't, I would strongly suspect that one of them is wrong.

37 posted on 05/08/2002 12:21:05 PM PDT by Physicist
[ Post Reply | Private Reply | To 1 | View Replies]

To: Physicist
It has been known for a few years that there is an anomalous anisotropy in the polarization of the cosmic microwave radiation background.

Could this account, at least in part, for the uneven distribution of matter in the early Universe?

Tuor

38 posted on 05/08/2002 12:26:53 PM PDT by Tuor
[ Post Reply | Private Reply | To 37 | View Replies]

To: Tuor
Could this account, at least in part, for the uneven distribution of matter in the early Universe?

No, because there is no global anisotropy to the distribution of matter. On the largest scale, it is fairly even.

The unevenness of the matter distribution in the early universe is well described by acoustics.

39 posted on 05/08/2002 12:39:11 PM PDT by Physicist
[ Post Reply | Private Reply | To 38 | View Replies]

To: Physicist
I really don't have enough expertise to comment, but there is some precedent for variable measurements. Also, some precedent for ideas on the edge.

Just for fun, the Attractive Universe Theory

40 posted on 05/08/2002 12:48:02 PM PDT by Nebullis
[ Post Reply | Private Reply | To 37 | View Replies]


Navigation: use the links below to view more comments.
first previous 1-2021-4041-6061-79 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson