Posted on 02/25/2013 10:34:07 AM PST by Red Badger
ince the radio-frequency emission from planets is expected to be strongly influenced by their interaction with the magnetic field and corona of the host star, the physics of this process can be effectively constrained by making sensitive measurements of the planetary radio emission.
Up to now, however, numerous searches for radio emission from extrasolar planets at radio wavelengths have only yielded negative results. Here we report deep radio observations of the nearby Neptune-mass extrasolar transiting planet HAT-P-11b at 150 MHz, using the Giant Meterwave Radio Telescope (GMRT).
On July 16, 2009, we detected a 3σ emission whose light curve is consistent with an eclipse when the planet passed behind the star. This emission is at a position 14′′ from the transiting exoplanets coordinates; thus, with a synthetized beam of FWHM∼16′′, the position uncertainty of this weak radio signal encompasses the location of HAT-P-11. We estimate a 5% false positive probability that the observed radio light curve mimics the planets eclipse light curve. If the faint signature is indeed a radio eclipse event associated with the planet, then its flux would be 3.87 mJy±1.29 mJy at 150 MHz. However, our equally sensitive repeat observations of the system on November 17, 2010 did not detect a significant signal in the radio light curve near the same position. This lack of confirmation leaves us with the possibility of either a variable planetary emission, or a chance occurrence of a false positive.
Although we are not able to draw a definitive conclusion on 150 MHz radio emission from HAT-P-11 b, at the very least the hint of radio detection presented here identifies HAT-P-11 b as a prime candidate for many follow-up observations in the near future. The priority is to try to confirm the present tentative detection, via re-observation with GMRT at 150 MHz and/or new observations with LOFAR in the 30-250 MHz range (providing a 1-100 mJy sensitivity depending on the observation parameters used; van Haarlem et al., submitted, 2013) and UTR-2 in the 10-30 MHz range (providing a sensitivity of ∼100 mJy; Ryabov et al. 2004). The observed spectral range can also be extended toward shorter wavelengths using GMRT, with even higher sensitivities of ∼1 mJy at 240 MHz and ∼50 µJy at 614 MHz (e.g., Lecavelier des Etangs et al. 2009). Observations over a broad range of frequencies will, with any luck, allow confirmation of the existence of the emission and better constraints on the planetary magnetic field strength and determination of the radio spectral index.
The future observations should also be distributed at multiple epochs and at different orbital phases of the planet to characterize the suspected variability of the radio emission in terms of duty cycle, as well as the radio emission as a function of the star-planet angle and the emission directivity (CMI produces narrowly beamed radio emission). In this context, Hess and Zarka (2011) have analyzed all the observables that could be derived from a broadband dynamic spectrum with a sufficient signal-tonoise ratio.
In the long term, it should be possible to investigate if the radio emission from extrasolar planetary systems correlates with the stellar spot activity. In this context, HAT-P-11 represents the target of choice because the Kepler mission has recently demonstrated the possibility of following the spot activity and perhap even of drawing the butterfly diagram of surface spots for this star.
Radio observations of different types of exoplanets are also crucial for comparative exoplanetology. For instance, observations of the other transiting hot-Neptune GJ436 b (Gillon et al. 2007) will allow comparison with a planet similar in mass but orbiting an M-dwarf star which is half the mass and radius of HAT-P-11 and known to have a strong Far-UV and Lyman-αoutput (Ehrenreich et al. 2010). With a 6.55 Earth mass, the nearby exoplanet GJ1214 b should also provide an opportunity to undertake search for radio emission from a water-rich lower mass super-Earth planet (Charbonneau et al. 2009; D´esert et al. 2011). In the near future, more sensitive observations at even lower frequencies will become feasible with the LOFAR observatory, providing a great boost to exoplanetary research.
Sounds like it........
http://en.wikipedia.org/wiki/HAT-P-11b
ET Phone home Ping!..........
Pretty dumb aliens using VHF for this.
Their Algore hasn’t invented their Internet yet.............
Well, what sort of modulation are they using?
Maybe they are transmitting TV reruns of Lost In Space........
AM........Alien Modulation, of course!..........
"...of course it could be a bounce from the illudium Q-36 explosive space modulator. Where was the kaboom?"
“Hint of 150 MHz radio emission from the Neptune-mass extrasolar transiting planet HAT-P-11b”
http://www.johnspeedie.com/healy/saywhat.wav
This planet is located approximately 122 light-years away............it’s gonna take a while..........
It’s a message from the aliens, “Send More Chuck Berry.”
They want more Casey Kasem top 40 oldies countdowns!
>This planet is located approximately 122 light-years away.
Well I take it back then. If they were using VHF 122 years ago that’s not too shabby.
Not a message, but rather, natural emissions. Stars generate HUGE magnetic fields. Planets orbiting and spinning within these fields disrupt them, and can produce radio waves as a result. Analysis of these emissions can tell astronomers more about the exoplanet. It is yet another clever technique to tease out info from these staggeringly distant objects.
Well, VHF communications would put them at the techno level of approximately 1940’s to 1960’s, 122 years ago, so they would be maybe 50 to 100 tears ahead of us.........
tears = years.......
Probably answering Tesla.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.