Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Giant Radio Telescope Tackles Black Holes
Cosmiverse ^

Posted on 04/03/2002 8:18:40 AM PST by Texaggie79

Giant Radio Telescope Tackles Black Holes
April 2, 2002 08:00 CST

Space exploration requires a great deal of imagination. With the international Space Very Long Baseline Interferometry mission (VLBI), supported by NASA until last month, a global team of scientists and engineers not only imagined a telescope larger than Earth, they actually created it.

Black holes are perhaps the most elusive cosmic entity. Although we cannot see black holes, astronomers have confirmed their existence from the behavior of objects near the areas thought to be black holes. To learn more about these giant mysteries, scientists have to get a closer look at them. The very successful international joint mission has propelled astronomers one step closer to understanding the complex mechanisms that control black holes.

Although people generally think of black holes as all-consuming vacuums, they also eject material at speeds nearing the speed of light. The material emits radio waves, which can be detected by radio telescopes.

Right image: Artist's concept of Very Long Baseline Interferometry space and ground radio telescopes that, together, created a virtual telescope three times Earth's diameter.

However, for a radio telescope to be able to observe details as fine as those observed by the Hubble Space Telescope, it has to be roughly 100,000 times larger than Hubble, or about 161 kilometers (100 miles) in diameter, said Dr. David Murphy, a JPL radio astronomer currently visiting the Japanese Space Agency.

To expand the resolution capabilities of ground radio telescopes, many radio telescopes can observe simultaneously to effectively "create" a telescope as big as the array of telescopes. However, even radio telescopes peppered across the globe aren’t sufficient to see the necessary details around black holes.

So a Japanese-built radio telescope in space was added to an array of 40 ground telescopes. The resulting "radio telescope" was as big as the orbit (32,187 kilometers or 20,000 miles). It revealed details in the observed objects more than 100 times finer than the Hubble Space Telescope can see. Sixteen different nations participated in the ambitious five-year mission.

"It was the United Nations of radio astronomy," said Dr. David Meier, a JPL astrophysicist. "To see different countries working together to build a single, very complex instrument was very impressive."

Above image: Radio images taken during the mission near the supermassive black hole in the quasar 1928+738

The project was "perhaps the most complicated science mission ever," according to project scientist Dr. Bob Preston of JPL.

The space telescopes relayed radio signals from the celestial sources to NASA’s Deep Space Network, a set of communication antennas on three different continents, as well as to sites at the U.S. National Radio Astronomy Observatory (NRAO) and in Japan. These signals, along with those received at ground radio telescopes, were recorded on high-density videotape.

The videotapes were then sent to a common facility to be ‘read’ by a correlator that synchronizes tapes from every receiver to within one millionth of a second. With the help of computer software that mimics the focus of a camera, the radio waves become celestial images.

"It’s like looking at a picture made with radio waves by a camera that’s larger than Earth," said Dr. David Meier, JPL astrophysicist. "We are able to zoom into the centers of black holes closer than any other imaging technique."

Left image: The Very Long Baseline Array is a global interferometer combining signals from radio telescopes from the Virgin Islands to Hawaii. This is equivalent to a telescope nearly as large as the earth. Click image to enlarge.

In addition to many awe-inspiring pictures, scientists have gained extensive scientific information from the mission, with results appearing in more than 200 scientific papers. A lot has been learned at the most fundamental level about the environment near super massive black holes. Material escaping in jets from black holes in the center of galaxies was confirmed to be moving nearly at the speed of light. The structure, time-variability and magnetic fields of material near the black holes provided additional clues to the nature of these violent regions of space.

The mission also concentrated its enormous magnification power on other energetic celestial objects, such as pulsars. A pulsar is a neutron star, an extremely dense object formed by a supernova explosion at the end of a massive star's lifetime. The mission also studied molecular masers in star-forming regions. A maser is a cousin of the laser that transmits a highly focused beam of microwave energy.

In the future, radio astronomy will become even more precise. If selected by NASA, the Advanced Radio Interferometry between Space and Earth mission will further the study of supermassive black holes by obtaining images with resolutions 3,000 times greater than NASA's Hubble Space Telescope.

Source: NASA



TOPICS: Astronomy; Science
KEYWORDS: blackholes; crevolist; space
Navigation: use the links below to view more comments.
first previous 1-2021-4041-48 last
To: ThinkPlease
It's a very exciting field, with great opportunities.

Is there any theoretical or practical limitation that prohibits doing VLBI with OPTICAL instruments?

I should think the resolution would be, dare I say it: absolutely "ASTRONOMICAL!"

41 posted on 04/03/2002 3:45:07 PM PST by longshadow
[ Post Reply | Private Reply | To 35 | View Replies]

To: edwin hubble
Then imagine a visual interferometer system with Earth-moon baseline!! Images of extra-solar planets.

Ah, you beat me to it by 24 minutes!

42 posted on 04/03/2002 3:48:34 PM PST by longshadow
[ Post Reply | Private Reply | To 40 | View Replies]

To: longshadow
Visual wavelength interferometry...br> Yes, it can be done...
Synchronizing, aligning, with an Earth-moon baseline will be the challenge
but by the time we are ready to install on the moon, we would have the technology.

Eventually a baseline of Jupiter-orbit size.

43 posted on 04/03/2002 3:59:33 PM PST by edwin hubble
[ Post Reply | Private Reply | To 42 | View Replies]

To: edwin hubble
Eventually a baseline of Jupiter-orbit size.

Heck, a continent-wide baseline would produce prodigious results at optical frequencies..... why wait?

44 posted on 04/03/2002 4:07:05 PM PST by longshadow
[ Post Reply | Private Reply | To 43 | View Replies]

To: longshadow
Here's a good overview paper on optical interferometry in space, National Academies of Science

Space Science in the Twenty-First Century
Imperatives for the Decades 1995 to 2015
Astronomy and Astrophysics

Nat. Academies overview paper on optical interferometry in space

45 posted on 04/03/2002 4:11:44 PM PST by edwin hubble
[ Post Reply | Private Reply | To 42 | View Replies]

To: edwin hubble
Here's a good overview paper on optical interferometry in space, National Academies of Science

Thanks!

46 posted on 04/03/2002 5:16:59 PM PST by longshadow
[ Post Reply | Private Reply | To 45 | View Replies]

To: longshadow;edwin hubble
We also just hired an optical interferometer guy for one of our instrumentation positions. He's done some pretty neat stuff, and we're definitely looking forward to his work when he gets here. The problem with getting such high resolution in the optical is that you need a source with relatively high surface brightness that you can both see and resolve the source at the same time. There's another guy out there who does optical interferometry of Wolf-Rayet stars, really young stars that are sloughing off their outer atmospheres due to radiation pressure. He found, using local optical interferometry (at Keck, I think), that several Wolf-Rayet stars have companions, an effect that couldn't have been discovered without interferometry. Really cool stuff. Both interferometry and high mass stars in the same project.
47 posted on 04/04/2002 4:57:14 AM PST by ThinkPlease
[ Post Reply | Private Reply | To 46 | View Replies]

To: ThinkPlease
The problem with getting such high resolution in the optical is that you need a source with relatively high surface brightness that you can both see and resolve the source at the same time.

Ah, so extended faint phenomona are not good targets for OI.

Bummer.

48 posted on 04/04/2002 8:35:26 AM PST by longshadow
[ Post Reply | Private Reply | To 47 | View Replies]


Navigation: use the links below to view more comments.
first previous 1-2021-4041-48 last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson