Free Republic
Browse · Search
Bloggers & Personal
Topics · Post Article

Skip to comments.

TAP molten salt nuclear reactor design that'd generate 75 times more electricity per ton of uranium
Next Big Future blog ^ | February 4, 2014 | Brian Wang

Posted on 02/08/2014 4:13:24 PM PST by 2ndDivisionVet

Email ThisBlogThis!Share to TwitterShare to Facebook

Transatomic Power (TAP) is developing an advanced molten salt reactor that generates clean, passively safe, proliferation-resistant, and low-cost nuclear power. This reactor can consume the spent nuclear fuel (SNF) generated by commercial light water reactors or use freshly mined uranium at enrichment levels as low as 1.8% U-235. It achieves actinide burnups as high as 96%, and can generate up to 75 times more electricity per ton of mined uranium than a light-water reactor.

Transatomic Power has greatly improved the molten salt concept, while retaining its significant safety benefits. The main technical change we make is to change the moderator and fuel salt used in previous molten salt reactors to a zirconium hydride moderator, with a LiF-based fuel salt. During operation the fuel in the salt is primarily uranium. Together, these components generate a neutron spectrum that allows the reactor to run using fresh uranium fuel with enrichment levels as low as 1.8% U-235, or using the entire actinide component of spent nuclear fuel (SNF). Previous molten salt reactors such as the ORNL Molten Salt Reactor Experiment (MSRE) relied on high-enriched uranium, with 33% U-235. Enrichments that high would raise proliferation concerns if used in commercial nuclear power plants.

Transatomic Power’s design also enables extremely high burnups – up to 96% – over long time periods. The reactor can therefore run for decades and slowly consume both the actinide waste in its initial fuel load and the actinides that are continuously generated from power operation. Furthermore, our neutron spectrum remains primarily in the thermal range used by existing commercial reactors. We therefore avoid the more severe radiation damage effects faced by fast reactors, as thermal neutrons do comparatively less damage to structural materials.

A key difference between Transatomic Power’s reactor and other molten salt reactors is its zirconium hydride moderator, which we use instead of a conventional graphite moderator. Zirconium is a metal with a low absorption of neutrons and high resistance to radiation damage. Hydrogen is a highly effective moderator. The reactor core contains zirconium hydride rods. These rods are surrounded by cladding to extend the life of the moderator in the corrosive molten salt.

The available experimental data suggest that the service lifetime of the moderator rods will be at least 4 years, and could potentially last the lifetime of the plant. Additional in situ testing is needed to determine the full extent of the service lifetime.

There are three factors driving this higher electricity output: lower enrichment, higher burn-up, and better conversion of heat to electricity:

Lower Enrichment: One ton of natural uranium ore yields 88 kilograms of LWR fuel enriched to 5%. However, it yields 274 kilograms if only enriched to 1.8%. This is a factor of 3.1X more starting fuel mass for the TAP reactor.

Higher Burn-up: At 5% enrichment, light water reactors have improved their burnups from 30 Gigawatt-days per metric ton of heavy metal (GWd per MTHM), and are quickly approaching burnups as high as 45 GWd per MTHM. In contrast, the TAP reactor can achieve up to 96% burnup at 1.8% enrichment —the equivalent of 870 GWd per MHTM out of a theoretical maximum of 909 GWd per MHTM. This is a factor of 19.2X more thermal energy for the TAP reactor.

Better Conversion: Light water reactors have outlet temperatures of 290°C -330°C, and typical thermal efficiencies of about 34%. TAP reactors have an outlet temperature over 650°C with a gross thermal efficiency of about 44%. This is a factor of 1.3X more for the TAP reactor.

According to sources cited by the World Nuclear Association, proven world reserves of uranium are estimated to be 5.3 million metric tons if the market price were $130 per kilogram (current prices are about $80-110 per kilogram – at a higher price more mines are viable) and 7.1 million metric tons if the price increases to $260 per kilogram. Using light-water reactors, WNA calculates these reserves are enough “for about 80 years” especially given expected increases in energy use.

This limitation is currently not a serious problem, because it is likely that reserves could be extended by a factor of 2 or more through additional exploration. However, nuclear power’s generation share is currently only 12% of global generation. If this were to increase because of rapid energy demand of if countries turn away from fossil fuels, the relatively low burnup of light-water reactors may become an issue.

By comparison, the TAP reactor can use current known uranium reserves to supply fully 100% of the world’s electricity needs for about 4,000 years.

Techniques now under research for collecting uranium from seawater are estimated to become economically viable once uranium reaches a price of about $300 per kilogram. The TAP reactor generates enough electricity per kilogram of fuel that it remains commercially viable even at this price.

Compared to a similarly-sized light-water reactor, the annual waste stream is reduced from 10 to 0.5 metric tons – which is 95% less waste. Furthermore, the vast majority of our waste stream – the lanthanides, krypton, xenon, tritiated water vapor, noble metals, and semi-noble metals – has a relatively short half-life decay, on the order of a few hundred years or less. We believe mankind can tractably store waste materials on these timescales, compared to the hundreds of thousands of years required for waste from LWRs.

Future TAP Designs

The basic TAP reactor design described in this report will benefit from future innovations in a number of different ways. Improvements to complementary technology will become commercially available over time. These technologies include high temperature ceramics such as SiC-SiC composites for heat exchangers and other reactor internals, which will allow us to increase the reactor’s operating temperature and increase thermal efficiency. The helium sparging in the primary loop off-gas system may be replaced by more advanced cryogenic removal methods. Furthermore, we will likely be able to incorporate closed loop Brayton cycles or open loop air turbine cycles in the future.


TOPICS: Business/Economy; Science; Society
KEYWORDS: atomicpower; electricity; energy; fission; fusion; moltensaltreactor; nuclearpower; transatomicpower; zirconiumhydride
Navigation: use the links below to view more comments.
first previous 1-2021-38 last
To: mozarky2

Near Winslow? Is it still there?


21 posted on 02/08/2014 10:37:24 PM PST by Sequoyah101
[ Post Reply | Private Reply | To 12 | View Replies]

To: nvscanman

The peanut farmer killed molten salt along with breeder reactors didn’t he?

The ORNL Salt reactor could not be recharged easily and could not get rid of the spent contaminants. Didn’t work need to be done to make the filling and cleaning of the salt medium continuous rather than batch?


22 posted on 02/08/2014 10:40:39 PM PST by Sequoyah101
[ Post Reply | Private Reply | To 17 | View Replies]

To: 2ndDivisionVet

If it sounds too good to be true, it is.


23 posted on 02/08/2014 10:46:34 PM PST by Moonman62 (The US has become a government with a country, rather than a country with a government.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: theBuckwheat
“walkaway safe”, so in the event of total loss of cooling power like at Fukushima, the reactor stays within the safe and stable portion of its operating envelope.

The total loss of cooling power at Fukushima resulted from a bad decision. Even after the coolant loop shutdown from the tsunami damage, there was still cooling power left - the shutdown reactor could have been flooded with seawater. Rather than immediately flood with seawater to prevent the meltdown, the decision was delayed because to do so would have permanently disabled the reactors. Probably the seawater flooding should have been enabled by the scram and initiated by the coolant loop shutdown, rather than subject to a fallible decision chain.

24 posted on 02/09/2014 12:00:56 AM PST by no-s (when democracy is displaced by tyranny, the armed citizen still gets to vote)
[ Post Reply | Private Reply | To 10 | View Replies]

To: CharlesWayneCT; Extremely Extreme Extremist

>> Also, another benefit of nuclear power is ultra-high speed data and cable transmission. Imagine paying $29.99/month for T-1 speed internet service.
>
> That would suck. T1 is only 1.544 megabits per second. I’m paying $30 a month for a 30mbits/sec download speed.

Maybe he meant T3 or T4? (see bandwidth-chart: http://www.lageman.com/bandwidth.htm )


25 posted on 02/09/2014 12:04:29 AM PST by OneWingedShark (Q: Why am I here? A: To do Justly, to love mercy, and to walk humbly with my God.)
[ Post Reply | Private Reply | To 19 | View Replies]

To: OneWingedShark

I’m also not sure how nuclear power speeds up our internet, maybe that is just one of those “free unlimitless power” things.


26 posted on 02/09/2014 5:46:43 AM PST by CharlesWayneCT
[ Post Reply | Private Reply | To 25 | View Replies]

To: no-s

The cluster-FAIL@Fukushima started decades ago, at the moment the utility accepted a reactor design that stored the spent fuel on top of the reactor.

I am not “afraid” of nuclear power, but for a variety of reasons including unnecessary risks like the way spent fuel is dealt with (and with no national storage facility), not to mention the immense capital costs and open-ended liability, I can’t wait until most of the existing plants in the US are mothballed/entombed.

Go Liquid fluoride thorium reactor! Go LENR!


27 posted on 02/09/2014 7:49:59 AM PST by theBuckwheat
[ Post Reply | Private Reply | To 24 | View Replies]

To: CharlesWayneCT
I’m also not sure how nuclear power speeds up our internet, maybe that is just one of those “free unlimitless power” things.

I'd think that by having towns locally providing power we could (a) take down the power-transmission (and telephone) lines [for recycling] and (b) re-purposing the telephone/power lines for optical-lines.

28 posted on 02/09/2014 11:18:39 AM PST by OneWingedShark (Q: Why am I here? A: To do Justly, to love mercy, and to walk humbly with my God.)
[ Post Reply | Private Reply | To 26 | View Replies]

To: 2ndDivisionVet; AdmSmith; AnonymousConservative; Berosus; bigheadfred; Bockscar; cardinal4; ...

Thanks 2ndDivisionVet.


29 posted on 02/09/2014 6:14:02 PM PST by SunkenCiv (http://www.freerepublic.com/~mestamachine/)
[ Post Reply | Private Reply | View Replies]

To: theBuckwheat
The cluster-FAIL@Fukushima started decades ago, at the moment the utility accepted a reactor design that stored the spent fuel on top of the reactor.

Isn't it funny how these screwups always seem to appear at the tail end of a series of choices that taken individually, seemed perfectly reasonable to the decision makers at the time??

30 posted on 02/09/2014 11:51:30 PM PST by no-s (when democracy is displaced by tyranny, the armed citizen still gets to vote)
[ Post Reply | Private Reply | To 27 | View Replies]

To: 2ndDivisionVet; SunkenCiv

Investment cost = $ 2000 M/520 MWe = $4000/kWe or the same as for the traditional nuclear power plants. http://large.stanford.edu/courses/2012/ph241/schultz2/

they have to reduce that to less than $3000/kW (perhaps to 2 500) to be competitive.


31 posted on 02/10/2014 1:43:11 AM PST by AdmSmith (GCTGATATGTCTATGATTACTCAT)
[ Post Reply | Private Reply | To 1 | View Replies]

To: AdmSmith

California just invested in several large PV arrays at $5/W ($5k/kW). Nuclear is less expensive than Alternate Energy.


32 posted on 02/10/2014 1:54:56 AM PST by Cvengr (Adversity in life and death is inevitable. Thru faith in Christ, stress is optional.)
[ Post Reply | Private Reply | To 31 | View Replies]

To: Cvengr

Yes, but you have to beat coal powered plants.


33 posted on 02/10/2014 2:34:04 AM PST by AdmSmith (GCTGATATGTCTATGATTACTCAT)
[ Post Reply | Private Reply | To 32 | View Replies]

To: Cvengr

Production cost see page 28 SCANA provided their all-in cost estimates for nuclear ($76/MWh), natural gas ($81/MWh), coal ($117/MWh), offshore wind ($292/MWh) and solar ($437/MWh)

http://www.scana.com/NR/rdonlyres/94A681F0-6304-46A9-932E-8F7224FC052E/0/SCANA2011AnalystDayPresentation.pdf


34 posted on 02/10/2014 3:11:31 AM PST by AdmSmith (GCTGATATGTCTATGATTACTCAT)
[ Post Reply | Private Reply | To 32 | View Replies]

To: 2ndDivisionVet

A very informative link that raises some questions about the design http://www.energyfromthorium.com/forum/viewtopic.php?f=3&t=4303


35 posted on 02/10/2014 3:31:31 AM PST by AdmSmith (GCTGATATGTCTATGATTACTCAT)
[ Post Reply | Private Reply | To 1 | View Replies]

To: hadaclueonce
The only electrical generation the progressives want is generated by unicorn milk.

LOL - Good one hadaclueonce...

36 posted on 02/10/2014 6:24:15 AM PST by GOPJ ("Hillary Clinton says (the) press has big egos and no brains". - Tony Blair - May 19, 1993)
[ Post Reply | Private Reply | To 4 | View Replies]

BUILDING A SAFER, CLEANER NUCLEAR REACTOR
LESLIE DEWAN AND MARK MASSIE ARE REVIVING THE NUCLEAR DREAM
Paul Kvinta
Posted May 19, 2015
http://www.popsci.com/leslie-dewan-and-mark-massie-are-reviving-nuclear-dream


37 posted on 06/12/2015 11:48:03 PM PDT by SunkenCiv (What do we want? REGIME CHANGE! When do we want it? NOW)
[ Post Reply | Private Reply | View Replies]

To: AdmSmith; AnonymousConservative; Berosus; bigheadfred; Bockscar; cardinal4; ColdOne; ...
Note: this topic is from 2/08/2014. I pinged you last year, this is a re-ping because there's an update (above). Thanks 2ndDivisionVet.

38 posted on 06/13/2015 12:36:56 PM PDT by SunkenCiv (What do we want? REGIME CHANGE! When do we want it? NOW)
[ Post Reply | Private Reply | To 37 | View Replies]


Navigation: use the links below to view more comments.
first previous 1-2021-38 last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
Bloggers & Personal
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson