Free Republic
Browse · Search
General/Chat
Topics · Post Article

Cells & Identity "We are not automatons to our genes," enthused scientist and lecturer, Dr. Bruce Lipton, who shared his concepts in the field of new biology. We all contain a "metropolis of 50 trillion citizens,"—the cells in our body, which could each be considered sentient beings in their own right, yet they act together as a community, he stated.

1 posted on 02/10/2005 1:06:55 PM PST by restornu
[ Post Reply | Private Reply | View Replies ]


To: restornu

Brace yourself for the onslaught of irrationality from the Religious Darwinists.

You can't dare even question their FAITH without risking hoots and howls and ridicule from idiots who just use poor old Darwin as a tool for their anti-Christian, anti-American crusade.

And if someone responds to my post with idiocy then please know that you are accepting the mantle I hereby bestow upon you. WARNING: I will taunt you and fart in your general direction.

Rational commentary will be met courteously.


2 posted on 02/10/2005 1:16:40 PM PST by PeterFinn (Why is it that people who know the least know it the loudest?)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
But the boundaries between species are distinct and firm – one species does not simply trail off into another by degrees.

B.S.

There is nothing magical about a "species"... All that it means for two animals to be in the same "species" is that they can mate and produce fertile offspring.

But it's not always so simple. There are cases in which even within the same "species," there are subgroups of animals such that all subgroups can produce fertile offspring within their own subgroup and with at least one other subgroup, but not all subgroups can produce fertile offspring with all members of the "species."

In other words, bird A can mate successfully with bird B, bird B can mate successfully with bird C, but bird A cannot mate successfully with bird C. Get it?

This is just another clear example of how Creationists oversimplify things. It's bad science. And then the little wussies whine and whine that the real scientists won't take them seriously.

3 posted on 02/10/2005 1:26:27 PM PST by xm177e2 (Stalinists, Maoists, Ba'athists, Pacifists: Why are they always on the same side?)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
Here's one of the last interviews ever given by the greatest evolutionist of the 20th century, Ernst Mayr (who died just a few days ago).

ERNST MAYR: WHAT EVOLUTION IS

EDGE: To what extent has the study of evolutionary biology been the study of ideas about evolutionary biology? Is evolution the evolution of ideas, or is it a fact?

ERNST MAYR: That's a very good question. Because of the historically entrenched resistance to the thought of evolution, documented by modern-day creationism, evolutionists have been forced into defending evolution and trying to prove that it is a fact and not a theory. Certainly the explanation of evolution and the search for its underlying ideas has been somewhat neglected, and my new book, the title of which is What Evolution Is, is precisely attempting to rectify that situation. It attempts to explain evolution. As I say in the first section of the book, I don't need to prove it again, evolution is so clearly a fact that you need to be committed to something like a belief in the supernatural if you are at all in disagreement with evolution. It is a fact and we don't need to prove it anymore. Nonetheless we must explain why it happened and how it happens.

One of the surprising things that I discovered in my work on the philosophy of biology is that when it comes to the physical sciences, any new theory is based on a law, on a natural law. Yet as several leading philosophers have stated, and I agree with them, there are no laws in biology like those of physics. Biologists often use the word law, but for something to be a law, it has to have no exceptions. A law must be beyond space and time, and therefore it cannot be specific. Every general truth in biology though is specific. Biological "laws" are restricted to certain parts of the living world, or certain localized situations, and they are restricted in time. So we can say that their are no laws in biology, except in functional biology which, as I claim, is much closer to the physical sciences, than the historical science of evolution.

EDGE: Let's call this Mayr's Law.

MAYR: Well in that case, I've produced a number of them. Anyhow the question is, if scientific theories are based on laws and there aren't any laws in biology, well then how can you say you have theories, and how do you know that your theories are any good? That's a perfectly legitimate question. Of course our theories are based on something solid, which are concepts. If you go through the theories of evolutionary biology you find that they are all based on concepts such as natural selection, competition, the struggle for existence, female choice, male dominance, etc. There are hundreds of such concepts. In fact, ecology consists almost entirely of such basic concepts. Once again you can ask, how do you know they're true? The answer is that you can know this only provisionally by continuous testing and you have to go back to historical narratives and other non-physicalist methods to determine whether your concept and the consequences that arise from it can be confirmed.

EDGE: Is biology a narrative based of our times and how we look at the world?

MAYR: It depends entirely on when in the given age of the intellectual world you ask these questions. For instance when Darwin published The Origin of Species, the leading Cambridge University geologist was Sedgwick, and Sedgwick wrote a critique of Darwin's Origin that asked how Darwin could be so unscientific as to use chance in some of his arguments, when everyone knew that God controlled the world? Now who was more scientific, Darwin or Sedgwick? This was in 1860 and now, 140 years later, we recognize how much this critique was colored by the beliefs of that time. The choice of historical narratives is also very time-bound. Once you recognize this, you cease to question their usefulness. There are a number of such narratives that are as ordinary as proverbs and yet still work.

EDGE: Darwin is bigger than ever. Why?

MAYR: One of my themes is that Darwin changed the foundations of Western thought. He challenged certain ideas that had been accepted by everyone, and we now agree that he was right and his contemporaries were wrong. Let me just illuminate some of them. One such idea goes back to Plato who claimed that there were a limited number of classes of objects and each class of objects had a fixed definition. Any variation between entities in the same class was only accidental and the reality was an underlying realm of absolutes.

EDGE: How does that pertain to Darwin?

MAYR: Well Darwin showed that such essentialist typology was absolutely wrong. Darwin, though he didn't realize it at the time, invented the concept of biopopulation, which is the idea that the living organisms in any assemblage are populations in which every individual is uniquely different, which is the exact opposite of such a typological concept as racism. Darwin applied this populational idea quite consistently in the discovery of new adaptations though not when explaining the origin of new species.

Another idea that Darwin refuted was that of teleology, which goes back to Aristotle. During Darwin's lifetime, the concept of teleology, or the use of ultimate purpose as a means of explaining natural phenomena, was prevalent. In his Critique of Pure Reason, Kant based his philosophy on Newton's laws. When he tried the same approach in a philosophy of living nature, he was totally unsuccessful. Newtonian laws didn't help him explain biological phenomena. So he invoked Aristotle's final cause in his Critique of Judgement. However, explaining evolution and biological phenomena with the idea of teleology was a total failure.

To make a long story short, Darwin showed very clearly that you don't need Aristotle's teleology because natural selection applied to bio-populations of unique phenomena can explain all the puzzling phenomena for which previously the mysterious process of teleology had been invoked.

The late philosopher, Willard Van Orman Quine, who was for many years probably America's most distinguished philosopher — you know him, he died last year — told me about a year before his death that as far as he was concerned, Darwin's greatest achievement was that he showed that Aristotle's idea of teleology, the so-called fourth cause, does not exist.

EDGE: Is this an example of Occam's Razor?

MAYR: It's that in part as well, but what's crucial is the fact that something that can be carefully analyzed, like natural selection, can give you answers without your having to invoke something you cannot analyze like a teleological force.

Now a third one of Darwin's great contributions was that he replaced theological, or supernatural, science with secular science. Laplace, of course, had already done this some 50 years earlier when he explained the whole world to Napoleon. After his explanation, Napoleon replied, "where is God in your theory?" And Laplace answered, "I don't need that hypothesis." Darwin's explanation that all things have a natural cause made the belief in a creatively superior mind quite unnecessary. He created a secular world, more so than anyone before him. Certainly many forces were verging in that same direction, but Darwin's work was the crashing arrival of this idea and from that point on, the secular viewpoint of the world became virtually universal.

So Darwin really had an amazing impact, not just on evolutionary theory, but on many aspects of everyday human thought. My firm belief is that each period in world history has a particular set of ideas that are the Zeitgeist of that period. And what causes this Zeitgeist? The answer usually is that there are a couple of important books that have been responsible for everybody's thinking. The number one book in this realm is, of course, the Bible. Then for many years, the answer might have been Karl Marx's Das Kapital. There was a short period when Freud was mentioned (though I don't think he's mentioned anymore by anyone besides the Freudians). The next one — and there is no doubt in my mind that Darwin's Origin of Species was the next one — not only secularized science, gave us the story of evolution, but also produced hosts of really basic theoretical concepts, like bio-populationism and, as I showed, the repudiation of teleology. No one before Darwin had introduced these ideas or had advanced them so forcefully.

EDGE: Not even the scientific community outside of evolutionary biologists?

MAYR: No. They weren't brought up with these ideas, though scientists like T. H. Huxley probably felt, as he said, "how stupid of me not to have thought of it."

EDGE: How do you account for the fact that in this country, despite the effect of Darwinism on many people in the scientific community, more and more people are god fearing and believe in the 8 days of creation?

MAYR: You know you cannot give a polite answer to that question.

EDGE: In this venue we appreciate impolite, impolitical, answers.

MAYR: They recently tested a group of schoolgirls. They asked, where is Mexico? Do you know that most of the kids had no idea where Mexico is? I'm using this only to illustrate the fact that ­ and pardon me for saying so ­ the average American is amazingly ignorant about just about everything. If he was better informed, how could he reject evolution? If you don't accept evolution then most of the facts of biology just don't make sense. I can't explain how an entire nation can be so ignorant, but there it is.

EDGE: I understand that there is a facsimile of the first (1899) edition of Darwin's Origin of the Species.

MAYR: Yes and this is an interesting story. Darwin's importance has only been gradually acknowledged. Even 50 years ago, Darwin was just one of those people's names you learned was kind of important. That was it. Nobody read him. Well I published a very successful book for Harvard University Press in 1963 and this gave me the courage to go to the director of Harvard Press, Tom Wilson, and say to him, Tom, I have a great wish, a heart's desire, and that is to see a facsimile edition of the first edition of the Origin of Species. We have facsimile editions of all the great classics, but we haven't got one for Darwin. So he said all right, all right, we'll do it for you, even though we'll probably lose money since who's going to buy it? In 1964 they published this facsimile edition. That was almost 40 years ago. and at that time, the first few years I guess they sold about a couple hundred a year but much to everybody's surprise, sales did not drop off after all the libraries had their facsimile edition, but rather they picked up. After a while, they sold over a thousand a year, and then about 6 [or] 7 years ago I was informed by Harvard Press that for that particular year they had for the first time sold 2,500 copies. The last two years I have a report that they sold 3,000 copies a year! Now this shows you how an interest in Darwin has been steadily growing in spite of the great majority of ignorant people. People are beginning to want to know what Darwin really said, which for me is an absolutely marvelous development. You know there's an interesting side note that as a publisher you might be interested in. In the first edition of the Origin of the Species there's not a single misprint. What a document of the workmanship in 1859.

EDGE: Where do you think Darwinism is going to go in the next 50 years?

MAYR: Well, Darwinism will not have to do any going, because it's already here. In the last 50 years, ever since the "Evolutionary Synthesis" of the 1940s, the basic theory of Darwinism has not changed, with perhaps one exception, that is the question of the target of selection. What's the object of a selective act? For Darwin, who didn't know any better, it was the individual — and it turns out he was right.

An individual either survives or doesn't, an individual either reproduces or doesn't, an individual either reproduces very successfully or it doesn't. The idea that a few people have about the gene being the target of selection is completely impractical; a gene is never visible to natural selection, and in the genotype, it is always in the context with other genes, and the interaction with those other genes make a particular gene either more favorable or less favorable. In fact, Dobzhanksy, for instance, worked quite a bit on so-called lethal chromosomes which are highly successful in one combination, and lethal in another. Therefore people like Dawkins in England who still think the gene is the target of selection are evidently wrong. In the 30's and 40's, it was widely accepted that genes were the target of selection, because that was the only way they could be made accessible to mathematics, but now we know that it is really the whole genotype of the individual, not the gene. Except for that slight revision, the basic Darwinian theory hasn't changed in the last 50 years.

EDGE: Where do the generation of William Hamilton, George Williams and John Maynard Smith fit in?

MAYR: Hamilton never denied the primacy of the individual. In the case of G. C. Williams, I have come to the unhappy conclusion that not many of the proposals of his best known book, Adaptation and Natural Selection (1996) are valid.

EDGE: All right, so Darwinism isn't going to change in 50 years, but the people writing about it certainly are changing.

MAYR: Every year one if not two books come out about Darwinian theory. Many of them are favorable, which is fine, and yet as many others attempt to improve or revise Darwin's original ideas, coming up with some so-called new theory that is invariably total nonsense.

EDGE: I can imagine what you think about evolutionary psychology.

MAYR: Not necessarily! To tell the truth, I don't know much about it, but I have heard there's a field called evolutionary epistemology. They use a very simple Darwinian formula that can really be stated in a single sentence. If you have a lot of variation, more than you can cope with, only the most successful will remain. That is how things happen. In epistemology and countless other fields. Variation and elimination.

EDGE: Who's notable in that field?

MAYR: Quite a few people though I can't recall their names right now. Suffice it to say that there are many more evolutionary epistemologists in Germany and Austria than in this country.

EDGE: It seems to me that Darwin is much better known in England than in the United States. Books about Darwin sell well and people debate the subjects. Here in America what passes for intellectual life doesn't necessarily include reading and having an appreciation of Darwin.

MAYR: Yet the funny thing is if in England, you ask a man in the street who the greatest living Darwinian is, he will say Richard Dawkins. And indeed, Dawkins has done a marvelous job of popularizing Darwinism. But Dawkins' basic theory of the gene being the object of evolution is totally non-Darwinian. I would not call him the greatest Darwinian. Not even Maynard Smith. Maynard Smith was raised in math and physics, and he was an airplane engineer in the last war. For the most part, he still thinks like a mathematician and engineer. His most successful contribution to evolutionary biology has been applying so-called game theory to evolution. Personally I have — and now I perhaps expose myself to a great deal of criticism, but regardless — I have always been a little unhappy about that application of game theory. What animal ever, in a confrontation, would say, now let me figure it out, would it be better to be timid or would it be better to be bold? That's not the way organisms think. You get — and somebody would have to work this out since I'm not a mathematician — exactly the same result if you have a population with every animal acting with a different mixture of timidity and boldness. Individuals at one end of the curve are very timid and have little boldness, individuals in the middle of the curve have an appropriate mixture of timidity and boldness, and individuals at the other end of the curve are very bold. Somewhere in between, in a given environment with a given set of enemies and competitors, is the best mixture of the two tendencies. You get the same results with game theory, but in my opinion, the better solution has a much more biological, Darwinian approach.

EDGE: How can the evolution of human ethics be reconciled with Darwinism? Doesn't natural selection always favor selfishness?

MAYR: If the individual were the only target of selection, this would indeed be an inevitable conclusion. However, small social groups that compete with each other, such as the groups of hunter-gatherers in our human ancestry, were ­ as groups ­ also targets of selection. Groups, the members of which actively cooperated with each other and showed much reciprocal helpfulness, had a higher chance for survival than groups that did not benefit from such cooperation and altruism. Any genetic tendency for altruism would therefore be selected in a species consisting of social groups. In a social group, altruism may add the to fitness. The founders of religions and philosophies erected their ethical system on this basis.

EDGE: What important questions have I not asked you?

MAYR: One question that is very difficult one to answer is whether the Darwinian framework is robust enough to remain the same for many years, which I think it is, yes. The real question is what the burning issues in evolutionary biology are today. To answer that you've got to get back into functional biology. Take, for instance, a particular gene. Say this gene makes amino acids that determine which side of the egg is to become the anterior end of the larva and which will become the rear. We know that's what it does but how it can do that is something about which we don't have the slightest clue. That's one of the big problems, but it's in the realm of proteins and functional biology rather than of DNA and evolutionary biology.

In evolutionary biology we have species like horseshoe crabs. The horseshoe crab goes back in the fossil record over two hundred million years without any major changes. So obviously they have a very invariant genome type, right? . Wrong, they don't. Study the genotype of a series of horseshoe crabs and you'll find there's a great deal of genetic variation. How come, in spite of all this genetic variation, they haven't changed at all in over two hundred million years while other members of their ecosystem in which they were living two hundred million years ago are either extinct or have developed into something totally different? Why did the horseshoe crabs not change? That's the kind of question that completely stumps us at the present time.

Then there are issues that no one besides a few biologists can fully fathom. Like how and why do prokaryotes, bacteria that have no nucleus, differ in their evolution from eukaryotes, organisms that do have an nucleus. Eukaryotes have sexual reproduction, genetic recombination and well-formed chromosomes, whereas prokaryotes have none of the above. So how do they get genetic variation, which they must have in order to survive according to the principle of natural selection? The answer is that prokaryotes exchange genes with each other unilaterally; one bacterium injects a set of DNA into another bacterium, which is an amazing process. Genes of course also go from one chromosome to another via this old-fashioned process that all bacteria use to reproduce. Beyond that, we don't really know how much such gene transfer occurs in higher organisms.

EDGE: A number of years ago I was talking to a German publisher about a new book on Darwinism. "I can't publish it," he said. "It's just too hot to handle." Why is Darwin so dangerous, to use Dan Dennett's phrase?

MAYR: I have a good deal of contact with some very good young German evolutionary biologists, and I'm constantly amazed how preoccupied they are with political concerns. It's just that they have gone through a series of political changes, from the Weimar Republic, to the Nazi period, Soviet occupation, DDR, and finally a United Germany, and throughout this time, everything has always been colored by politics. People got their jobs because they were Nazis, or because they were anti-Nazis, and so forth. They have to find a way to purge this from their system. In Germany, they scrutinize all leaders in a field and check all the records as to whether they had been Nazis, which Nazi organizations they might have belonged to, whether they published either papers or books that indicate that they had been Nazis or Communist, etc.

They think they have to do all this cleansing of science so that people can't go and say well you didn't tell us that so-and-so was a Nazi or a Communist. Scientists just have to cope with that. On the other hand, translations of my books that were published in Germany have been very successful. In fact, one of them is so successful that the German printing has run out and I can't persuade the publisher to republish it. He asks why he should publish another German edition of the book, when everybody reads the English edition. Which is true.

EDGE: Recently the Frankfurter Allgemeine Zeitung began an initiative in their Feuilletton (Arts and Culture) section to present popular science and big scientific ideas to the public.

MAYR: I would say that generally you have far more food for the intellect in foreign newspapers than you have in American ones, except a little bit in papers like the Washington Post or The New York Times. It's remarkable; you pick up a German newspaper and there's all sorts of good reading material in it. Whereas we have very few such general interest articles in our papers. The focus in our papers tends to be almost exclusively on news rather than on education.


4 posted on 02/10/2005 1:36:31 PM PST by snarks_when_bored
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
Perhaps the most amazing aspect of the current situation is that while Darwin is treated as a secular saint in the popular media and the theory of evolution is regarded as the invincible challenge to all religious claims

What a crock. No real scientist claims that Darwinian theory disproves the existence of a God or supernatural claims. There's no way to prove that nothing supernatural exists. Every scientist knows this. There's no experiment we could do that would prove God does not exist.

And there are plenty of religious people who believe in God and that evolution and the origin of species took place on Earth, with or without His help.

No scientist thinks Darwin kills God.

5 posted on 02/10/2005 1:37:10 PM PST by xm177e2 (Stalinists, Maoists, Ba'athists, Pacifists: Why are they always on the same side?)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
Writing in Nature in 1999, Eörs Szathmay summarizes that, "The origin of species has long fascinated biologists. Although Darwin's major work bears it as a title, it does not provide a solution to the problem."

So what? So Darwin's theory was incomplete or inadequate. What's the problem?

Darwin doesn't "own" evolution. If parts of his theory were wrong, other scientists can amend them.

Science isn't like religion. It isn't brittle.

It's not "sacrilege" to question whether some or all of Darwin's theories were wrong, if you do so in a scientific manner. If you just assert that Darwin is wrong because his conclusions make you feel uncomfortable, that's not science, and it should get no respect from scientists.

It's not like claiming that part of the Bible is wrong. Sheesh.

6 posted on 02/10/2005 1:41:32 PM PST by xm177e2 (Stalinists, Maoists, Ba'athists, Pacifists: Why are they always on the same side?)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
..."Now one of Darwin's great contributions was that he replaced theological, or supernatural, science with secular science. Laplace, of course, had already done this some 50 years earlier when he explained the whole world to Napoleon. After his explanation, Napoleon replied, "where is God in your theory?" And Laplace answered, "I don't need that hypothesis." Darwin's explanation that all things have a natural cause made the belief in a creatively superior mind quite unnecessary. He created a secular world, more so than anyone before him. Certainly many forces were verging in that same direction, but Darwin's work was the crashing arrival of this idea and from that point on, the secular viewpoint of the world became virtually universal."

VS.

[ Evolutionary Theory ] is still, as it was in Darwin's time, a highly speculative hypothesis entirely without direct factual support and very far from that Self-Evident axiom some of it's more aggressive advocates would have us believe.

Michael Denton-

So, what's going on here? He still can't explain HOW life came about. If Ernst Mayr is the "end all" of neo-Darwinism, how can his version of Darwin's theory be so weak as to not withstand basic scrutiny? HIS theory is pure "philosophy", and based on Junk Science.

8 posted on 02/10/2005 5:23:17 PM PST by austinmark (If GOD Had Been A Liberal, We Wouldn't Have Had The Ten Commandments- We'd Have The Ten Suggestions.)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
I write as neither a creationist nor a Darwinist...

I hate it when the first words in an essay are an obvious lie.

Darwin himself was not sure he had produced one, and for many decades every competent evolutionary biologist has known that he did not.

Darwin wasn't sure that his theory on the development of species wouldn't be rejected as previous theories had been. It's been corrected and added upon as our scientific knowledge has grown, but the underlying theory, that organisims speciate over time in response to environmental pressures, remains largely intact.

And the rest of this article plays the standard, "Let's bandy about famous names and take their quotes out of context" game.

9 posted on 02/10/2005 5:36:40 PM PST by Zeroisanumber
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu

I'm reading Lee Strobel's "The Case for a Creator" right now. It deals with this very issue, among others. Very informative for the lay person that knows little of science.


10 posted on 02/10/2005 8:02:12 PM PST by Choose Ye This Day (This is a president who wants to leave his mark on more than a cocktail dress. --Steyn)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: PatrickHenry
Have a look at this. The AEI, a mainstream conservative thinktank, is now spouting creationist garbage. This is a major milesone. I pray it's not indicative of things to come

Makes me sick. I can hear our hard-earned political capital being pi$$ed away.

You may want to ping the list.

12 posted on 02/11/2005 5:53:30 PM PST by curiosity
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
The links are still missing; species appear suddenly and then remain relatively unchanged.

Just an example of the uncorroborative assertions with which this article is replete. Which links are still missing? The article doesn't say.

Just another piece of creationist chest-thumping; they hope if they can shout the same old lies loud enough and ofen enough, they'll cow the oppostion. Sorry.

I am sorry to see this go out under the by-line of the AEI though.

20 posted on 02/11/2005 6:49:58 PM PST by Right Wing Professor (Evolve or die!)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
I write as neither a creationist nor a Darwinist,..

Thus outing himself as a Creationist. No other group has to explain their position at the beginning of an article.

36 posted on 02/11/2005 8:09:08 PM PST by Doctor Stochastic (Vegetabilisch = chaotisch is der Charakter der Modernen. - Friedrich Schlegel)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
But the boundaries between species are distinct and firm – one species does not simply trail off into another by degrees.

Had the author given any evidence of such, it would have been interesting. He fails to define where he thinks a species boundary lies.

38 posted on 02/11/2005 8:11:02 PM PST by Doctor Stochastic (Vegetabilisch = chaotisch is der Charakter der Modernen. - Friedrich Schlegel)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
But, just wait, Darwin promised, the missing transitions will be found in the expected proportion when more research has been done. Thus began an intensive search for what the popular press soon called the "missing links." Today, the fossil record is enormous compared to what it was in Darwin's day, but the facts are unchanged. The links are still missing; species appear suddenly and then remain relatively unchanged. As Steven Stanley reported: "The known fossil record...offers no evidence that the gradualistic model can be valid."

Um, gee, really? Is the author really that grossly ignorant about the actual state of the fossil record, or is he just lying his face off about it? With anti-evolutionists, it's so hard to tell...

For example:

Example 2: reptile-mammals

[Figure1.4.1 (cartoon of vertebrate jaws)]

Figure 1.4.1. The jaws of three vertebrates—mammal, therapsid, and pelycosaur. A side view of three idealized skulls of mammals, therapsids (mammal-like reptiles), and pelycosaurs (early reptiles). The figure shows the differences between mammal and reptilian jaws and ear-bone structures. The jaw joint is shown as a large black dot, the quadrate (mammalian anvil or incus) is in turquoise, the articular (mammalian hammer or malleus) is in yellow, and the angular (mammalian tympanic annulus) is in pink. Note how, in the reptile, the jaw joint is formed between the blue quadrate and the yellow articular (with the pink angular close by), and how, in the mammal, the jaw joint is formed between the squamosal above and the dentary below. In the reptile, the squamosal is just above and contacting the quadrate. Advanced therapsids have two jaw joints: a reptile-like joint and a mammal-like joint (Figure based on Kardong 2002, pp. 275, reproduced with permission from the publisher, Copyright © 2002 McGraw-Hill)

We also have an exquisitely complete series of fossils for the reptile-mammal intermediates, ranging from the pelycosauria, therapsida, cynodonta, up to primitive mammalia (Carroll 1988, pp. 392-396; Futuyma 1998, pp. 146-151; Gould 1990; Kardong 2002, pp. 255-275). As mentioned above, the standard phylogenetic tree indicates that mammals gradually evolved from a reptile-like ancestor, and that transitional species must have existed which were morphologically intermediate between reptiles and mammals—even though none are found living today. However, there are significant morphological differences between modern reptiles and modern mammals. Bones, of course, are what fossilize most readily, and that is where we look for transitional species from the past. Osteologically, two major striking differences exist between reptiles and mammals: (1) reptiles have at least four bones in the lower jaw (e.g. the dentary, articular, angular, surangular, and coronoid), while mammals have only one (the dentary), and (2) reptiles have only one middle ear bone (the stapes), while mammals have three (the hammer, anvil, and stapes) (see Figure 1.4.1).

Early in the 20th century, developmental biologists discovered something that further complicates the picture. In the reptilian fetus, two developing bones from the head eventually form two bones in the reptilian lower jaw, the quadrate and the articular (see the Pelycosaur in Figure 1.4.1). Surprisingly, the corresponding developing bones in the mammalian fetus eventually form the anvil and hammer of the unique mammalian middle ear (also known more formally as the incus and malleus, respectively; see Figure 1.4.2) (Gilbert 1997, pp. 894-896). These facts strongly indicated that the hammer and anvil had evolved from these reptilian jawbones—that is, if common descent was in fact true. This result was so striking, and the required intermediates so outlandish, that many anatomists had extreme trouble imagining how transitional forms bridging these morphologies could have existed while retaining function. Young-earth creationist Duane Gish stated the problem this way:

"All mammals, living or fossil, have a single bone, the dentary, on each side of the lower jaw, and all mammals, living or fossil, have three auditory ossicles or ear bones, the malleus, incus and stapes. ... Every reptile, living or fossil, however, has at least four bones in the lower jaw and only one auditory ossicle, the stapes. ... There are no transitional fossil forms showing, for instance, three or two jawbones, or two ear bones. No one has explained yet, for that matter, how the transitional form would have managed to chew while his jaw was being unhinged and rearticulated, or how he would hear while dragging two of his jaw bones up into his ear." (Gish 1978, p. 80)

[Figure1.4.2a (cartoon of vertebrate ears)] [Figure1.4.2b (cartoon of vertebrate ears)]

Figure 1.4.2. A comparison of the ears of reptiles and mammals. The reptile ear is shown on the left, the mammal ear on the right. As in Figure 1.4.1, the quadrate (mammalian anvil or incus) is in turquoise and the articular (mammalian hammer or malleus) is in yellow. The stapes is shown in brown. Note how the relative arrangement of these bones is similar in both taxa, in the order of inner ear-stapes-quadrate-articular.

Gish was incorrect in stating that there were no transitional fossil forms, and he has been corrected on this gaff numerous times since he wrote these words. However, Gish's statements nicely delineate the morphological conundrum at hand. Let's review the required evolutionary conclusion. During their evolution, two mammalian middle ear bones (the hammer and anvil, aka malleus and incus) were derived from two reptilian jawbones. Thus there was a major evolutionary transition in which several reptilian jawbones (the quadrate, articular, and angular) were extensively reduced and modified gradually to form the modern mammalian middle ear. At the same time, the dentary bone, a part of the reptilian jaw, was expanded to form the major mammalian lower jawbone. During the course of this change, the bones that form the hinge joint of the jaw changed identity. Importantly, the reptilian jaw joint is formed at the intersection of the quadrate and articular whereas the mammalian jaw joint is formed at the intersection of the squamosal and dentary (see Figure 1.4.1).

How could hearing and jaw articulation be preserved during this transition? As clearly shown from the many transitional fossils that have been found (see Figure 1.4.3), the bones that transfer sound in the reptilian and mammalian ear were in contact with each other throughout the evolution of this transition. In reptiles, the stapes contacts the quadrate, which in turn contacts the articular. In mammals, the stapes contacts the incus, which in turn contacts the malleus (see Figure 1.4.2). Since the quadrate evolved into the incus, and the articular evolved into the malleus, these three bones were in constant contact during this impressive evolutionary change. Furthermore, a functional jaw joint was maintained by redundancy—several of the intermediate fossils have both a reptilian jaw joint (from the quadrate and articular) and a mammalian jaw joint (from the dentary and squamosal). Several late cynodonts and Morganucodon clearly have a double-jointed jaw. In this way, the reptilian-style jaw joint was freed to evolve a new specialized function in the middle ear. It is worthy of note that some modern species of snakes have a double-jointed jaw involving different bones, so such a mechanical arrangement is certainly possible and functional.

Since Figure 1.4.3 was made, several important intermediate fossils have been discovered that fit between Morganucodon and the earliest mammals. These new discoveries include a complete skull of Hadrocodium wui (Luo et al. 2001) and cranial and jaw material from Repenomamus and Gobiconodon (Wang et al. 2001). These new fossil finds clarify exactly when and how the malleus, incus, and angular completely detached from the lower jaw and became solely auditory ear ossicles.

Recall that Gish stated: "There are no transitional fossil forms showing, for instance, three or two jawbones, or two ear bones" (Gish 1978, p. 80). Gish simply does not understand how gradual transitions happen (something he should understand, obviously, if he intends to criticize evolutionary theory). These fossil intermediates illustrate why Gish's statement is a gross mischaracterization of how a transitional form should look. In several of the known intermediates, the bones have overlapping functions, and one bone can be called both an ear bone and a jaw bone; these bones serve two functions. Thus, there is no reason to expect transitional forms with intermediate numbers of jaw bones or ear bones. For example, in Morganucodon, the quadrate (anvil) and the articular (hammer) serve as mammalian-style ear bones and reptilian jaw bones simultaneously. In fact, even in modern reptiles the quadrate and articular serve to transmit sound to the stapes and the inner ear (see Figure 1.4.2). The relevant transition, then, is a process where the ear bones, initially located in the lower jaw, become specialized in function by eventually detaching from the lower jaw and moving closer to the inner ear.

[Figure1.4.3 (cartoon of vertebrate jaws)]

Figure 1.4.3. A comparison of the jawbones and ear-bones of several transitional forms in the evolution of mammals. Approximate stratigraphic ranges of the various taxa are indicated at the far left (more recent on top). The left column of jawbones shows the view of the left jawbone from the inside of the mouth. The right column is the view of the right jawbone from the right side (outside of the skull). As in Figure 1.4.1, the quadrate (mammalian anvil or incus) is in turquoise, the articular (mammalian hammer or malleus) is in yellow, and the angular (mammalian tympanic annulus) is in pink. For clarity, the teeth are not shown, and the squamosal upper jawbone is omitted (it replaces the quadrate in the mammalian jaw joint, and forms part of the jaw joint in advanced cynodonts and Morganucodon). Q = quadrate, Ar = articular, An = angular, I = incus (anvil), Ma = malleus (hammer), Ty = tympanic annulus, D = dentary. (Reproduced from Kardong 2002, pp. 274, with permission from the publisher, Copyright © 2002 McGraw-Hill)

The above is from 29+ Evidences for Macroevolution, which compiles several hundred transitional fossils, which is itself just a *SMALL* sampling of the ENORMOUS numbers of fine transitional sequences found in the fossil record and well known to anyone who has bothered to CRACK OPEN A BOOK -- or even do a websearch -- in the past 25 years or so... So what's the anti-evolutionists' excuse for remaining abysmally ignorant of such things, and repeatedly making the false claim that there are "no" transitional fossils, etc.?

Here's another look:

Mammal-Like Reptiles

As previously stated, a succession of transitional fossils exists that link reptiles (Class Reptilia) and mammals (Class Mammalia). These particular reptiles are classifie as Subclass Synapsida. Presently, this is the best example of th e transformation of one major higher taxon into another. The morphologic changes that took place are well documented by fossils, beginning with animals essentially 100% reptilian and resulting in animals essentially 100% mammalian. Therefore, I have chosen this as the example to summarize in more detail (Table 1, Fig. 1).

[Fig. 1a]
[Fig. 1b]

Skulls and jaws of synapsid reptiles and mammals; left column side view of skull; center column top view of skull; right column side view of lower jaw. Hylonomus modified from Carroll (1964, Figs. 2,6; 1968, Figs. 10-2, 10-5; note that Hylonomus is a protorothyrod, not a synapsid). Archaeothyris modified from Reisz (1972, Fig. 2). Haptodus modified from Currie (1977, Figs, 1a, 1b; 1979, Figs. 5a, 5b). Sphenacodo n modified from Romer & Price (1940, Fig. 4f), Allin (1975, p. 3, Fig. 16);note: Dimetrodon substituted for top view; modified from Romer & Price, 1940, pl. 10. Biarmosuchus modified from Ivakhnenko et al. (1997, pl. 65, Figs. 1a, 1B, 2); Alin & Hopson (1992; Fig. 28.4c); Sigogneau & Tchudinov (1972, Figs. 1, 15). Eoarctops modified from Broom (1932, Fig. 35a); Boonstra (1969, Fig. 18). Pristerognathus modified from Broom (1932, Figs 17a, b,c); Boonstra (1963, Fig. 5d). Procynosuchus modified from Allin & Hopson (1992, Fig. 28.4e); Hopson (1987, Fig. 5c); Brink (1963, Fig. 10a); Kemp (1979, Fig. 1); Allin (1975, p. 3, Fig. 14). Thrinaxodon modified from Allin & Hopson (1992, Fig. 28.4f);Parrington (1946, Fig. 1); Allin (1975, p. 3, Fig. 13). Probainognathus modified from Allin & Hopson (1992, Fig. 28.4g); Romer (1970, Fig. 1); Allin (1975, p. 3, Fig. 12). Morga nucodon modified from Kermack, Mussett, & Rigney (1981, Figs. 95, 99a; 1973, Fig. 7a); Allin (1975, p. 3, Fig. 11). Asioryctes modified from Carroll (1988, Fig. 20-3b). Abbreviations: ag = angular; ar = articular; cp = coronoid process; d = dentary; f = lateral temporal fenestra; j = jugal; mm = attachment site for mammalian jaw muscles; o = eye socket; po = post orbital; q = quadrate; rl = reflected lamina; sq = squamosal; ty = tympanic.

TAXONOMY
LATERAL TEMPORAL FENESTRA
LOWER JAW DENTARY
TEETH
LOWER JAW: POST- DENTARY BONES
MIDDLE EAR & JAW ARTICULATION
M: Early Placental mammals
Asioryctes
Upper Cretaceous
Merged with eye socket; cheek arch bowed out laterally 100% of jaw length is the den- tary; condylar process in contact with squamosal Fully differentiated teeth; incisors, canines, premolars; one tooth replacement No post-dentary bones 3 middle ear bones (stapes, incus, malleus) + tympanic; squamosal-dentary jaw joint
L: "Pantothere" mammals
Amphitherium
Middle/Upper Jurassic
X 100% of jaw length is the den-  tary; condylar process contacts squamosal Fully differentiated teeth; incisors, canines, premolars; one tooth replacement Post-dentary bones migrated to middle ear Probably 3 middle ear bones (stapes, incus, malleus) + tympanic; squamosal-dentary jaw joint
K: Morganucodontid mammals
Morganucodon  Upper Triassic & Lower Jurassic
Merged with eye socket; cheeck arch bowed out laterally 100% of jaw length is the den- tary; condylar process expanded posteriorly to make contact with squamosal Fully differentiated teeth; incisors, canines, premolars; one tooth replacement 20% of jaw length; reflected lamina decreased to narrow ribbon-like horseshoe Stapes extends from inner ear capsule to quadrate; quadrate tiny; both quadrate-articular and squamosal-dentary jaw joints
J: Chiniquodontid cynodonts
Probainognathus
Middle Triassic
Much larger than eye socket; 40- 45% of skull length; expanded posterioirly, medially, & laterally; midline of skull narrow sagittal crest; chek arch bowed out laterally 95% of jaw length is the dentary; large coronoid process expanded posteriorly; condylar process expanded posteriorly Large single canine; cheek teeth multicusped; tooth replacement reduced 20% of jaw length; angular notch widened ventrally; width of main part of angular decreased; reflec - ted lamina decreased to narrow ribbon-like horseshoe Stapes extends from inner ear capsule to quadrate; quadrate tiny; quadrate-articular joint
I:Galesaurid cynodonts
Thrinaxodon
Lower Triassic
Much larger than eye socket; 40% of skull length; expanded pos- terioirly, medially, & laterally; midline of skull narrow sagittal crest; chek arch bowed out laterally 85% of jaw length is the dentary; large coronoid process expanded to top of eye socket and pos- teriorly; jaw muscles attached to most of coronoid process Large single canine; cheek teeth multicusped; tooth replacement reduced 25% of jaw length; angular notch widened ventrally; width of reflec- ted lamina decreased; width of main part of angular decreased Stapes extends from inner ear capsule to quadrate; quadrate small; quadrate-articular jaw joint
H: Procynosuchid cynodonts
Procynosuchus
upper Upper Permian
Much larger than eye socket; 40% of skull length; expanded pos- terioirly, medially, & laterally; midline of skull narrow sagittal crest; chek arch bowed out laterally 75-80% of jaw length is the den- tary; coronoid process expanded to near top of eye socket and posteriorly; jaw muscles  attached to dorsal part of coronoid process Large single canine; cheek teeth multicusped 30% of jaw length; angular notch widened ventrally; width of reflected lamina decreased Stapes extends from inner ear capsule to quadrate; quadrate small; quadrate-articular jaw joint
G: Early Therocephalians
Pristerognathus
lower Upper Permian
Larger than eye socket; expanded posteriorly and medially; 30% of skull length 75-80% of jaw length is the den- tary; posterior end of dentary expanded posteriorly and dorsally into narrow blade-like coronoid process; rises to middle of eye socket Large single canine; other teeth simple cones. 35% of jaw length; angular notch deepened into a cleft; reflected lamina large, broad, blade-like Stapes extends from inner ear capsule to quadrate; quadrate small; quadrate-articular jaw joint
F: Early Gorgonopsians
Eoarctops
lower Upper Permian
Slightly larger than eye socket; expanded posteriorly and medially (minimal); 20-25% of skull length 65-75% of jaw length is the den- tary; posterior end of dentary slightly expanded posteriorly and dorsally as incipient coronoid process Large single canine; other teeth simple cones. 40% of jaw length; angular notch deepened into a cleft; reflected lamina large, broad, blade-like Stapes extends from inner ear capsule to quadrate; quadrate- articular jaw joint
E: Eotitanosuchians
Sphenacodon
Lower Permian
Small; slightly smaller than eye socket; slightly expanded posteriorly and medially 65-75% of jaw length is the den- tary; posterodorsal edge rises broadly but slightly above tooth row Large single canine; other teeth simple cones. 40% of jaw length; angular notch deepened into a cleft; reflected lamina large, broad, blade-like Stapes extends from inner ear capsule to quadrate;  quadrate- articular jaw joint 
D: Late sphenacodonts
Sphenacodon
Upper Pennsylvanian
Small; smaller than eye socket; confined to one side of skull 65% of jaw length is the dentary; posterodorsal edge rises broadly but slightly above the tooth row Enlarged incipient canines; other teeth simple cones 60% of jaw length; venntral edge of angular notched ("angular notch") offsetting a short pro- tusion (reflected lamina) Stapes extends from inner ear capsule to quadrate; quadrate large and plate-like; quadrate- articular jaw joint
C: Early spenacodonts
Haptodus
Upper Pennsylvanian
Tiny; smaller than eye socket; confined to one side of skull 65-75% of jaw length is the den- tary; posterodorsal edge rises broadly but slightly above tooth row Undifferentiated; slightly enlarged incipient canines just behind nares 70% of jaw length; ventral edge of angular with shallow indentation Stapes extends from inner ear capsule to quadrate; quadrate- articular jaw joint
B: Early ophiacodonts
Archaothyris
upper Middle Pennsylvanian
Tiny; smaller than eye socket; confined to one side of skull x Undifferentiated; slightly enlarged incipient canines just behind nares x Stapes extends from inner ear capsule to quadrate; quadrate- articular jaw joint
A: Protorothyrids
Hylonomus
lower Middle Pennsylvanian
Absent 65-75% of jaw length is the den- tary; posterodorsal edge rises broadly but slightly above tooth row Undifferentiated; slightly enlarged incipient canines just behind nares 70% of jaw length; ventral edge of angular continuous  Stapes extends from inner ear capsule to quadrate; quadrate- articular jaw joint

Table 1: Morphology of synapsid reptiles and mammals (Note that Hylonomus is a protothyrid, not a synapsid). Data from references cited in text.

Modern reptiles and mammals are very distinctive, easily diagnosable, and do not intergrade. Reptiles are covered by scales, mammals by hair; reptiles are cold-blooded, mammals warm-blooded; reptiles do not suckle their young, mammals have mammary glands; reptiles have sprawling posture, mammals have upright posture. Most of these features are soft part anatomy or physiology that very rarely fossilize (although dinosaur skin impressions are known from Cretaceous sediments, and imprints of mammal hair are known from Eocene bats from Germany; Franzen, 1990). In the fossil record, we must look to skeletal features.

There are many skeletal features which allow us to distinguish the reptiles from the mammals (Carroll, 1988; Table 1, rows A, M). The single most important defining characteristic is the nature of the articulation of the lower jaw to the skull (Simpson, 1959). In reptiles, multiple bones comprise the lower jaw. A small bone at the posterior end of the lower jaw, the articular, articulates with the quadrate bone of the skull (Simpson, 1959; Carroll, 1988). In mammals, one large bone, the dentary, comprises the lower jaw. It articulates with the squamosal bone of the skull (Simpson, 1959; Carroll, 1988).

From comparative anatomy studies, it is certain that most of the bones of the reptiles and mammals are homologous (Crompton & Parker, 1978; Carroll, 1988). Of greatest importance, the middle ear bones of mammals (stapes, incus, malleus, and tympanic) are homologous with several of the skull and jaw bones of reptiles (stapes, quadrate, articular, and angular, respectively; Romer, 1956, p. 33-38, 1970a; Allin, 1975, 1986; Allin & Hopson, 1992; Crompton & Parker, 1978; Hopso n, 1987, 1994; Carroll, 1988). One group of reptiles, the synapsids (Subclass Synapsida), share with the mammals an additional homologous structure: the lateral temporal fenestra, which is an opening in the skull behind the eye socket at the triple junction between the squamosal, jugal , and post orbital bones (Broom, 1932; Frazetta, 1968; Kemp, 1982; Carroll, 1988). A band of bone composed of the jugal and the squamosal is adjacent to the lateral temporal fenestra (Broom, 1932; Kemp, 1982; Carroll, 1988). This is the cheek arch so characteristic of mammal skulls (Broom, 1932; Kemp, 1982; Carroll, 1988). Therefore, synapsids are commonly named the “mammal-like reptiles.”

The presence of diagnosable morphologic differences between reptiles (including the oldest reptiles and the oldest synapsids) and mammals distinguishes them as distinct taxa. This allows us to test evolution by looking for transitional forms between the two. Because many of the bones are homologous, we should find evidence illustrating how these bones were modified over time to become the new bones. Furthermore, these morphologic changes should happen in parallel and in geochronologic succession.

Synapsid reptiles inhabited Pangea from the Middle Pennsylvanian through the Early Jurassic (Kemp, 1982, 1985; Sloan, 1983; Carroll, 1988; Hopson, 1969, 1987, 1994; Hopson & Crompton, 1969; Hotton, et al., 1986; Crompton & Jenkins, 1973; Sidor & Hopson, 1998; Romer & Price, 1940; Broom, 1932; Boonstra, 1963, 1969, 1971; Tchudinov, 1983; Olson, 1944; Tatarinov, 1974; Vyushkov, 1955; Efremov, 1954). From the Early Permian through the Early Triassic, they were the largest and most abundant land animals (Sloan, 1983; Colbert, 1965). Though much less well known to the general public than dinosaurs, one of the “cereal box dinosaurs,” Dimetrodon (the sail-backed reptile), is a synapsid, not a dinosaur (Romer & Price, 1940; Carroll, 1988). The oldest mammals are Late Triassic (Kemp, 1982; Carroll, 1988). Below is a discussion of the geochronologic succession linking synapsids and mammals. The oldest reptiles (named protorothyrids; Carroll, 1964, 1988, p. 192-199) are from the lower Middle Pennsylvanian, and the oldest synapsids (Reisz, 1972) are from the upper Middle Pennsylvanian, both of Nova Scotia. Upper Pennsylvanian and Lower Permian forms are known primarily from the midcontinent and Permian Basin region of the United States (Romer & Price, 1940; Currie, 1977, 1979; Kemp, 1982; Sloan, 1983). The basal Upper Permian forms are known from Russia (Tchudinov, 1960, 1983; Efremov, 1954; Olson, 1962; Sigogneau & Tchudinov, 1972; Ivakhnenko et al., 1997). Most of the Upper Permian and Lower Triassic succession is known from southern Africa, especially the Great Karoo of South Africa (Broom, 1932; Boonstra, 1963, 1969, 1971; Hopson & Kitching, 1972; Kemp, 1982; Sloan, 1983). The Middle Triassic forms are from South America (Romer, 1969a, 1969b, 1970b, 1973; Romer & Lewis, 1973; Bonaparte & Barbarena, 1975), and the Upper Triassic and Lower Jurassic mammals are known from Eurasia (Kermack, Mussett, & Rigney, 1973, 1981; Kemp, 1982). Subsequent Mesozoic mammals are known from all over the world (Simpson, 1928; Lillegraven et al., 1979).

When placed in proper geochronologic succession, the synapsids naturally form a succession of taxa (genera and families) that progressively become more mammal-like and less reptile-like (Kemp, 1982, 1985; Sloan, 1983; Sidor & Hopson, 1998; Hopson, 1987, 1994). Morphologic changes, summarized in Table 1 and Figure 1, affect the entire skeletal anatomy of these animals, but are most clearly displayed in their skulls.

The lateral temporal fenestra increased in size from a tiny opening smaller than the eye socket to a giant opening occupying nearly half the length of the skull. Ultimately, it merged with the eye socket, thus producing the full development of the cheek arch so characteristic of mammals (Broom, 1932; Frazetta, 1968; Kemp, 1982; Sloan, 1983; Hopson, 1987, 1994; Carroll, 1988).

Successively, the relative proportion of the lower jaw comprised of the dentary bone (teeth-bearing bone) gradually increased until the entire lower jaw consisted of the dentary (Kemp, 1982; Sloan, 1983; Carroll, 1988; Hopson, 1987, 1994). In Pennsylvanian and Lower and basal Upper Permian synapsids, the postero-dorsal edge of the lower jaw rose broadly but only slightly above the level of the tooth row (Romer & Price, 1940; Currie, 1977, 1979; Ivakhnenko et al., 1997; Tchudinov, 1960, 1983; Efremov, 1954; Olson, 1962; Sigogneau & Tchudinov, 1972; Hopson, 1987, 1994). In succeeding forms, the posterior part of the dentary expanded dorsally and posteriorly as a blade-like process, and progressively became larger (Broom, 1932; Boonstra, 1963, 1969, 1971; Sigogneau, 1970; Brink, 1963; Kemp, 1979; Hopson, 1987, 1994), forming the coronoid process (Parrington, 1946; Fourie, 1974; Romer, 1969b, 1970b, 1973; Hopson, 1987, 1994) to which the mammalian-type jaw musculature is attached (Barghusen, 1968; Bramble, 1978; Crompton, 1972; Crompton & Parker, 1978; Kemp, 1982; Sloan, 1983; Carroll, 1988). Concomitantly, the post-dentary bones progressively reduced in size (Allin, 1975; Crompton, 1972; Crompton & Parker, 1978; Kemp, 1982; Sloan, 1983; Carroll, 1988; Hopson, 1987, 1994).

Beginning with the Upper Pennsylvanian sphenacodonts, a notch developed in the angular bone that offsets a projection, the reflected lamina (Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994; Romer & Price, 1940; Currie, 1977, 1979; Kemp, 1982; Sloan, 1983; Carroll, 1988). The reflected lamina first became a large blade-like flange (Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994; Ivakhnenko et al., 1997; Tchudinov, 1960, 1983; Efremov, 1954; Olson, 1962; Sigogneau & Tchudinov, 1972; Broom, 1932; Sigogneau, 1970; Boonstra, 1963, 1969, 1971), and then was progressively reduced to a delicate horseshoe-shaped bone (Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994; Brink, 1963; Parrington, 1946; Fourie, 1974; Romer, 1969b, 1970b, 1973; Kermack, Mussett, & Rigney, 1973, 1981; Kemp, 1979, 1982; Sloan, 1983; Carroll, 1988).

Simultaneously, the quadrate progressively decreased in size (Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994; Kemp, 1982; Sloan, 1983; Carroll, 1988). The articular did not decrease in size much, being small initially, but developed a downward-pointing prong (Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994; Kemp, 1982; Sloan, 1983; Carroll, 1988). In the synapsids, the lower jaw was hinged to the skull by the articular and quadrate bones (Crompton, 1972; Crompton & Parker, 1978; Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994). Thus they are classified as reptiles (Simpson, 1959; Kemp, 1982; Sloan, 1983; Carroll, 1988). As the quadrate and articular became smaller, they were relieved of their solid suture to the dentary and skull (Crompton, 1972; Allin, 1975, 1986; Allin & Hopson, 1992; Hopson, 1987, 1994; Crompton & Parker, 1978; Kemp, 1982; Sloan, 1983; Carroll, 1988). A projection of the dentary extended posteriorly and made contact with the squamosal. Morganucodon possessed the mammalian dentary-squamosal jaw joint adjacent to the reptilian articular-quadrate jaw joint (Kermack, Mussett, & Rigney, 1973, 1981; Carroll, 1988). It is classified as the first mammal, but it is a perfect intermediate. Now that a new jaw joint was established, the quadrate and articular were subsequently relieved of that function (Crompton, 1972; Allin, 1975, 1986; Allin & Hopson, 1992; Hopson, 1987, 1994; Crompton & Parker, 1978; Kemp, 1982; Sloan, 1983; Carroll, 1988). Ultimately, in Middle and Upper Jurassic mammals, the tiny quadrate, articular, and ring-like angular migrated as a unit to the middle ear where they joined the stapes and became the incus, malleus, and tympanic bones (Allin, 197 5, 1986; Allin & Hopson, 1992; Hopson, 1987, 1994; Kemp, 1982; Sloan, 1983; Carroll, 1988).

Progressively, the teeth became differentiated. The large canines developed first, followed by the development of multicusped cheek teeth, reduced tooth replacement (Osborn & Crompton, 1973; Crompton & Parker, 1978), and finally full y differentiated incisors, canines, premolars, and molars with one tooth replacement during life (Kemp, 1982; Hopson, 1994).

Many other morphologic changes are documented in the fossil record. These demonstrate the morphologic and geochronologic succession from sprawling limb posture to upright limb posture of mammals (Jenkins, 1971; Romer & Lewis, 197 3; Kemp, 1982; Carroll, 1988; Hopson, 1994). As Jenkins (1971, p. 210) stated, “In details of morphology and function, the cynodont post-cranial skeleton should be regarded as neither ‘reptilian’ nor ‘mammalian’ but as transitional between the two classes .” Other changes have been adequately summarized elsewhere (Kemp, 1982; Sloan, 1983; Carroll, 1988; Hopson, 1994). Obviously, fundamental physiologic changes must have taken place as well, many of which are not directly preserved in the fossil record, though some can be inferred from the skeletal anatomy (Findlay, 1968; Kemp, 1982; Sloan, 1983, Carroll, 1988; Hopson, 1994).

This is well documented in the fossil record by a massive volume of incontrovertible data that cannot be explained away. Such large-scale, progressive, continuous, gradual, and geochronologically successive morphologic change (Sidor & Hopson, 1998) is descent with modification, and provides compelling evidence for evolution on a grand scale.

(The above is from The Fossil Record: Evolution or "Scientific Creation", which is yet ANOTHER source the anti-evolutionists are obviously completely ignorant of -- not that that stops them from spouting off falsehoods about the subject anyway...

It never ceases to amaze me how much the anti-evolutionsts *don't* know about the actual evidence. Aren't you supposed to actually *know* something about a topic before you attempt to critique?

43 posted on 02/11/2005 8:33:00 PM PST by Ichneumon
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
There is no plausible scientific theory of the origin of species! Darwin himself was not sure he had produced one, and for many decades every competent evolutionary biologist has known that he did not. Although the experts have kept quiet when true believers have sworn in court and before legislative bodies that Darwin's theory is proven beyond any possible doubt, that's not what reputable biologists, including committed Darwinians, have been saying to one another.

Who are these biologists who have allegedly been conspiring for decades behind our backs to keep the charade that is evolutionary biology going?!!

47 posted on 02/11/2005 8:52:30 PM PST by Youngblood
[ Post Reply | Private Reply | To 1 | View Replies ]

To: VadeRetro; Junior; longshadow; RadioAstronomer; Doctor Stochastic; js1138; Shryke; RightWhale; ...
Fact, Fable, and Darwin, Part 2

,

52 posted on 02/11/2005 9:30:07 PM PST by restornu (I am offcial DD invicible being......Ghosty! ---------- Harry Reid didn't CTR)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu

Today, the fossil record is enormous compared to what it was in Darwin's day, but the facts are unchanged. The links are still missing; species appear suddenly and then remain relatively unchanged. As Steven Stanley reported: "The known fossil record...offers no evidence that the gradualistic model can be valid."

One of these days, creationists will actually search out the sources of their quotes, rather than just posting them.  Nine times out of ten, creationists' "quotes" are fallacious, making me wonder whether they are just stupid, or outright liars.  Neither reflects well on their movement.

From the Quote Mine Project:

The quote comes from the start of Chapter 3 (see Point 5):

Some distinctive living species clearly originated in the very recent past, during brief instants of geologic time. Thus, quantum speciation is a real phenomenon. Chapters 4 through 6 provide evidence for the great importance of quantum speciation in macroevolution (for the validity of the punctuated model). Less conclusive evidence is as follows: (1) Very weak gene flow among populations of a species (a common phenomenon) argues against gradualism, because without efficient gene flow, phyletic evolution is stymied. (2) Many levels of spatial heterogeneity normally characterize populations in nature, and at some level, the conflict between gene flow between subpopulations and selection pressure within subpopulations should oppose evolutionary divergence of large segments of the gene pool; only small populations are likely to diverge rapidly. (3) Geographic clines, which seem to preserve in modern space changes that occurred in evolutionary time, can be viewed as supporting the punctuational model, because continuous clines that record gradual evolution within large populations represent gentle morphologic trends, while stepped clines seem to record rapid divergence of small populations. (4) Net morphologic changes along major phylogenetic pathways generally represent such miniscule [sp] mean selection coefficients that nonepisodic modes of transition are unlikely. Quantum speciation or stepwise evolution within lineages is implied. (5) The known fossil record fails to document a single example of phyletic evolution accomplishing a major morphologic transition and hence offers no evidence that the gradualistic model can be valid.

The quoted text is part of a list that Stanley believes supports "quantum speciation". And what is "quantum speciation"?

For the present, we can define quantum speciation simply as speciation in which most evolution is concentrated within an initial interval of time that is very brief with respect to the total longevity of the new lineage that is produced. Implicit in this concept is the idea that during the rapid, early phase of evolution, the seminal population has not yet expanded from its small, initial population size. [bold in original] [pg. 26]

And since, as we see on page 39, Stanley writes that "quantum speciation is a real phenomenon", there should be no doubt that he believes that evolution has occurred. However, he doesn't believe that evolution happens by changing an ancestral species into descendant species, but rather by descendants branching off from ancestors, as we can see on page 211:

Major trends in evolution are the result, not of phyletic transition, but of divergent speciation. Most are phylogenetic trends: net changes produced by multiple speciation events.

He comes to this conclusion by examining the fossil record. But the mined quote would have the reader believe that the fossil record doesn't support evolution, where as Stanley believes that it does.

- Jon (Augray) Barber

[Editor's note: In a blurb on the back cover of the paperback edition of Macroevolution: Pattern and Process (1998. Johns Hopkins University Press; Reprint edition), Douglas J. Futuyama notes that Stanley's book "addresses from a paleobiologist's perspective, the question of whether punctuated equilibria or gradualism offers the best account of the history of life."]

 

70 posted on 02/12/2005 6:07:23 AM PST by Junior (FABRICATI DIEM, PVNC)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: restornu
The author lost me when he enlisted Dr. Stanley in support.

The author who reviewed his book was prescient when he wrote:

"Children of the Ice Age" is not without its problems...The book, in total, is far too redundant. Several of the main points are stated in basically the same way a half dozen times or more. It is almost as if Stanley thinks that retelling the story again and again will make his theories more valid. Likewise, his overall tone and style are a little too conclusive and dogmatic for my tastes. A few pieces of new evidence can partially or completely overturn some of his views, but a reader can't easily tell this from the text. Finally, creationists will love to pull quotes out of context in this book and it is partially Stanley's fault. Even though he uses phrases like "rapid evolution" frequently, I only once (p. 229) noticed that he couched the word "rapid" with the correct phrase of "geologically speaking". Some readers may get the false impression Stanley thinks Australopithecus turned into Homo almost overnight.

I bolded the sentence for emphasis. This article is just another hatchet job taking quotes out of context just for the money.

101 posted on 02/15/2005 9:12:46 AM PST by <1/1,000,000th%
[ Post Reply | Private Reply | To 1 | View Replies ]

Free Republic
Browse · Search
General/Chat
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson