Free Republic
Browse · Search
Bloggers & Personal
Topics · Post Article

Skip to comments.

An Odd Hypothesis About Bubbles Could Finally Lead to Nuclear Fusion
gizmodo.com ^ | Yesterday 5:45am | Jamie Condliffe

Posted on 01/31/2015 12:59:03 AM PST by ckilmer

An Odd Hypothesis About Bubbles Could Finally Lead to Nuclear Fusion

Nuclear fusion is the dream of energy scientists the world over, because it promises limitless, clean electricity. Most efforts to kickstart the process use high-intensity lasers, insane magnetic field and super-hot hydrogen plasmas. But there may be a more humble alternative. It's called sonofusion, and it involves bubbles.

Nuclear fusion is the process through which the cores of atoms, called nuclei, collide to form a new, larger atomic nucleus. When the two nuclei are of a lower mass than iron, the reaction creates energy—lots and lots of energy. For instance, when two hydrogen nuclei smash into each other, they creating a helium atom—but lose some mass, in the form of a photon, along the way. That small change in mass equates to a huge creation of energy, as predicted by Einstein's favorite equation E=mc2. It's this reaction that lies at the heart of our stars.

Slow Going

It's not surprising that scientists have been trying to harness the power of fusion, especially given we're in desperate need of clean energy. In theory, it uses very little fuel to create masses of energy with zero emissions. If it can be initiated and controlled, it could solve the energy crisis overnight. Those are, admittedly, rather large ifs, though.

There are two popular schools of thought for initiating the process. The first is inertial confinement fusion, such as that used by researchers at the National Ignition Facility in Livermore, California. There, they use 192 beams from the world's most powerful laser to heat and compress a small pellet of hydrogen fuel until nuclear fusion reactions take place. They're making good progress, but they're yet to reach the point where the nuclear fusion reaction generates as much energy as the lasers supply.

An Odd Hypothesis About Bubbles Could Finally Lead to Nuclear Fusion

The second is magnetic confinement fusion, used in centers such as the Joint European Torus, where a hydrogen mixture is pumped with heat until it reaches temperatures approaching those at the centre of the sun. The mixture becomes a plasma, and is confined to a space—usually in a ring through the center of a torus—using incredibly high magnetic field, to keep it from touching the walls. At high enough temperatures and confinement pressures, fusion can (briefly) occur—though it still uses more energy than it creates.

The reason that making the reaction happen on Earth is so hard is that we don't have the benefit of gravitational forces that occur at the centre of stars. There, huge quantities of matter act to correspondingly massive gravity forces acting inwards, compressing nuclei together and helping drive the reaction. Without those forces on the surface of Earth, we have to find alternative means of creating them—and holding them in place so the reaction can start. But as the hydrogen fuel implodes, interactions between hydrogen and helium atoms creates huge instabilities and shockwaves themselves, making it extremely difficult to maintain the confinement. In turn, that makes the reaction less efficient, so eventually it peters out.

Make Bubbles, Break Bubbles

There is, perhaps, an alternative. When liquid undergoes rapid changes in pressure, cavities can form—seemingly from nowhere, but usually around some kind of impurity or imperfection in the fluid. The changing pressure causes this cavity to expand and contract: this is a bubble, and its method of creation is known as cavitation. In particularly violent pressure fields, the bubble can contract so quickly and with so much force that it collapses entirely, producing a shock wave. This phenomenon's what causes the dramatic pitting on boat propellor and water pumps, where high fluctuating pressures causes bubbles to form and collapse.

But in the controlled environment of a laboratory, the bubbles can do more than cause damage. Way back in 1934, at the University of Cologne, H. Frenzel and H. Schultes turned of the lights in their laboratory, put an ultrasound transducer in a tank of photographic developer fluid, and turned it on. They were hoping to speed up the development process of photographic film—but instead, they noticed dots of light that appeared for a split-second at a time This was the first evidence of a process called sonoluminescene, where the large quantities of energy generated by a collapsing bubble cause light to be emitted. And where there's light, there's energy.

An Odd Hypothesis About Bubbles Could Finally Lead to Nuclear Fusion

It's perhaps not surprising, then, that, scientists have since postulated that those same bubbles—if you make them big enough, and collapse hard enough—could create enough energy to kick-start the fusion process. In 1978, Hugh Flynn patented a method of generating energy by acoustically induced cavitation fusion—and it's easy to understand why he was so enamoured with the idea. Unlike other forms of fusion, where confinement and symmetry of process is the most important aspect of the experiments, bubble-driven doesn't care quite so much. Indeed, the theory behind the process is almost the opposite of the other technique: these bubbles are born out of instabilities. If the generation of a big enough collapse could be brought about, it could provide the initial energy required to drive fusion without much of the other techniques. It's a deliciously tempting idea.

False Start

Perhaps, it turns out, too tempting for some. In 2002, Rusi Taleyarkhan and his researcher colleagues, then at Oak Ridge National Labs, claimed to have observed evidence of sonofusion in the laboratory. The finding came as surprise to the research community, and many seemed skeptical that the results were accurate—perhaps not least because they'd been carried out with simple, bench-top lab equipment. Nonetheless, the research was published, more papers followed, and Taleyarkhan moved to Purdue University.

Sadly, other scientists using similar equipment were unable to replicate Taleyarkhan's work. Papers published by researchers from the University of Göttingen, UCLA, University of Illinois, and former colleagues at Oak Ridge National Labsall explained that they couldn't observe fusion using his experimental set-up. Then, in 2006, Taleyarkhan's results were reportedly repeated by Edward Forringer of LeTourneau University... in Taleyarkhan's own labs at Purdue.

In 2007, so much controversy surrounded Taleyarkhan's experiments that Purdue University launched an inquiry into his work. A panel reported that the independent verification was "highly doubtful." Taleyarkhan called the report a "one-sided, grossly exaggerated write-up." Ultimately, he was judged guilty of research misconduct for "falsification of the research record" in July, 2008. Stripped of his full titled professorship,the Office of Naval Research—one of his funders—barred him from federal funding for 28 months. Taleyarkhan declined to comment about his work for this article.

Update: Since this article was published,Taleyarkhan has spoken to us, and points out that Oak Ridge National Labs scientists did in fact confirm some of his experimental results, and that others also have since. He also explains that it was his named professor chair which was suspended—he remained a full tenured professor during the time.

The Sonofuture

A grey cloud still hangs over sonofusion. Academics working in the field—and there are certainly some—aren't keen to talk about their work. Certainly, they all failed to answer my emails for this report. But that's certainly not to say that research into bubble fusion is dead. Far from it.

In 2012, Markus Stokmaier from Germany's Institute for Nuclear and Energy Studies, wrote that "it can still make sense to try to pose the sonofusion question to mother nature experimentally." In fact, he gave Taleyarkhan some benefit of the doubt, outlining possible reasons that the experiments may have been hard to replicate, lauding aspects of the experimental set-up and suggesting improvements to the devices used to make it work better in the future.

But recently things have moved on and the sonofusion name has been cast off. First Light Fusion, for instance—a spin-out from the University of Oxford—claims to be "studying the use of intense shockwaves to crush gas-filled cavities, inducing asymmetric collapses that concentrate energy in space and time." This is, obviously, no longer the stuff of bench-top experiments; rather, First Light Fusion is generating huge shock fronts, presumably in some kind of shock tube, that strike a bubbles and cause it to collapse catastrophically. Indeed, it claims to have "demonstrated the formation of an inertially confined plasma in a completely new and worldwide-unique geometry." Finer details remain undisclosed, of course.

Not least because they're not alone. In State College, Pennsylvania, Quantum Fusion is using high pressure fields in liquids to induce severe bubble collapse to the same end. In Reno, Nevada, Burst Energies has "achieved cavitation under extremely high static pressure... capable of effecting unprecedented alterations of materials, molecules and ultimately atoms for the production of fusion energy." In Buxton, Maine, NanoSpire has announced "successful completion" of proof-of-concept experiments that show bubble cavitation could drive fusion reactions. There are, according to one academic I've spoken with who works on the periphery of the sector and would rather not be named, military labs works on the technique.

In contrast to Taleyarkhan's work, all of these studies are being undertaken by private companies rather than at academic institutions. That means there's no published work and, crucially, no real evidence about what stage the research is at. It could be years off; it could be just around the corner—it's impossible to tell. That said, the same academic suggested to me that these pressure-driven fusion techniques could feasibly be demonstrated as successful within five to ten years.

That's not, of course, to say that creating energy from bursting bubbles is the future of electricity production. In reality, whoever wins the race to creating a sustainable fusion reaction—whether it's with lasers, plasma-filled donuts or acoustic shockwaves—will likely dominate the field, at least initially. But the fortunes of the bubble might be rising faster than some people realise.



TOPICS: Miscellaneous; Science; Weird Stuff
KEYWORDS: bubblefusion; energy; fusion; nuclearfusion; sonofusion; sonoluminescence; stringtheory
This technology was discredited a decade ago.

What's odd is that there's now a half dozen private companies and universities working in the field.

1 posted on 01/31/2015 12:59:03 AM PST by ckilmer
[ Post Reply | Private Reply | View Replies]

To: ckilmer

“This technology was discredited a decade ago.
What’s odd is that there’s now a half dozen private companies and universities working in the field.”

Are they looking for grant money? After all, Obama’s been a sucker for ‘clean’ energy cons before.

I love cheap energy. Like right now it’s oil. [Grin.]


2 posted on 01/31/2015 1:41:32 AM PST by Arthur Wildfire! March (The DNC's 2012 Convention actually 'booed' God three times.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ckilmer

“This technology was discredited a decade ago.”

The technology is anything but discredited. At most the technology is simply too early and primitive to produce decisive results one way or the other.

“What’s odd is that there’s now a half dozen private companies and universities working in the field.”

That is because the general principle is sound, and it is going to take numerous approaches towards implementing the general principle to see if current technologies are capable of utilizing the general principle to yield near future results. that are economically feasible.


3 posted on 01/31/2015 1:42:43 AM PST by WhiskeyX
[ Post Reply | Private Reply | To 1 | View Replies]

To: ckilmer

4 posted on 01/31/2015 4:50:31 AM PST by Rodamala
[ Post Reply | Private Reply | To 1 | View Replies]

To: ckilmer

Yet, some of our colleagues would have us believe that stars are just cosmic accidents, fortuitous random results of the expansion of the universe.

Kind of tough to invent self-sustaining multibillion year virtually infinite energy sources ain’t it?

Creator.


5 posted on 01/31/2015 5:15:22 AM PST by Chainmail (A simple rule of life: if you can be blamed, you're responsible.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Chainmail

Well, stars have an advantage we don’t have on earth: an immense gravitational field to hold things together while fusion occurs. It’s an open question whether there’s a way to get to “break-even” (more energy out than in) without using gravity to compress things. There aren’t any powerplant-sized stars in the universe to show us how it’s done.


6 posted on 01/31/2015 6:19:45 AM PST by Campion
[ Post Reply | Private Reply | To 5 | View Replies]

To: ckilmer

Bubbles are used in some coal wash plants to pick up the fines from the froth.


7 posted on 01/31/2015 6:22:40 AM PST by Eric in the Ozarks (Rip it out by the roots.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ckilmer

What’s odd is that there’s now a half dozen private companies and universities working in the field.

...

The promise of free energy attracts a lot of con artists.


8 posted on 01/31/2015 6:28:43 AM PST by Moonman62 (The US has become a government with a country, rather than a country with a government.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ckilmer

Strippers named Bubbles create energetic responses too.


9 posted on 01/31/2015 6:32:43 AM PST by King Moonracer (Bad lighting and cheap fabric, that's how you sell clothing.....)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ckilmer

a process called sonoluminescene

I wonder it that is what I noticed as a teenager.
When cracking Ice cube trays in the dark, there
would be flashes of light. Always found that
interesting, couldn’t be bubbles but maybe related.


10 posted on 01/31/2015 6:45:53 AM PST by tet68 ( " We would not die in that man's company, that fears his fellowship to die with us...." Henry V.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ckilmer
This is only one of the promising non-mainstream fusion concepts being investigated. Another is inertial electrostatic confinement, which uses an electric field to heat ions to fusion conditions. One of the most interesting projects in this area is the Polywell. Research into this concept has been proceeding with Navy funding, The Wikipedia page on the concept is fairly informative as well as surprisingly apolitical.
11 posted on 01/31/2015 6:50:52 AM PST by Doug Loss
[ Post Reply | Private Reply | To 1 | View Replies]

To: Campion

Sigh. Gravity is also a creation - one that can be measured and guessed at - but nobody from Einstein on down knows what causes it.

There are no accidents.


12 posted on 01/31/2015 8:32:09 AM PST by Chainmail (A simple rule of life: if you can be blamed, you're responsible.)
[ Post Reply | Private Reply | To 6 | View Replies]


13 posted on 02/01/2015 10:13:32 AM PST by SunkenCiv (Imagine an imaginary menagerie manager imagining managing an imaginary menagerie.)
[ Post Reply | Private Reply | View Replies]

To: 6SJ7; AdmSmith; AFPhys; Arkinsaw; allmost; aristotleman; autumnraine; bajabaja; ...
Thanks ckilmer.

· String Theory Ping List ·
1972 Nobel1972 Nobel1972 Nobel
·
Join · Bookmark · Topics · Google ·
· View or Post in 'blog · post a topic · subscribe ·


14 posted on 02/01/2015 10:14:00 AM PST by SunkenCiv (Imagine an imaginary menagerie manager imagining managing an imaginary menagerie.)
[ Post Reply | Private Reply | View Replies]

To: Chainmail

By E=mc² I’ve long thought of gravity like a “condensate” of matter that warps the spacetime around it. Elementary as it may seem, if there were no matter, there could be no gravitation...and hence, probably no universe either.

But I ain’t no physicist, and so could be completely blown out of their ballpark. Though it as yet makes sense to me.


15 posted on 02/01/2015 12:36:03 PM PST by onedoug
[ Post Reply | Private Reply | To 12 | View Replies]

To: ckilmer

Let me guess. With this process, viable fusion power is only a decade away.


16 posted on 02/01/2015 4:02:32 PM PST by samtheman
[ Post Reply | Private Reply | To 1 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
Bloggers & Personal
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson