Posted on 07/24/2012 2:48:37 AM PDT by neverdem
Researchers have long had high hopes for lithium-air batteries, a device that has the potential to store 10 times more energy than the best lithium-ion batteries on the market today. But so far, lithium-air batteries have been unstable, falling apart after a few charges. Now researchers report that they've made the first stable lithium-air batteries. If the batteries can leap other hurdles needed to make them practical, they may one day give electric cars a driving range similar to today's gas guzzlers.
For lithium-air batteries to operate, several different components all need to work together. As they discharge, lithium atoms at a lithium metal electrode called the anode are stripped of electrons, turning them into mobile lithium ions. These ions then float through a conductive solution, or electrolyte, to a second electrode, called the cathode, where they combine with electrons in the cathode as well as oxygen atoms from the air to generate lithium oxide. When the batteries are plugged into an electrical outlet, the added voltage drives the reaction in reverse, recharging the battery. For the cycle to work, however, the electrodes and electrolytes must be stable.
But that hasn't been the case in early versions of these cells. The carbon used to make the cathodes and the different electrolytes researchers have tried so far undergo unwanted side reactions, falling apart and quickly causing the battery to fail after just a few charge and discharge cycles.
So for their current work, researchers led by Peter Bruce, a chemist at the University of St Andrews in the United Kingdom, opted to swap out both of the previous offenders. They replaced the conventional carbon-based cathode material with one made from inert gold nanoparticles that they hoped would be more stable. They also replaced the electrolyte—previously made from compounds called polycarbonates or polyethers—with one made from a common conductive solvent abbreviated DMSO that previous studies had shown may be less prone to react at the cathode. The new combo worked. As the team reports online today in Science, the new batteries were stable for 100 charge and discharge cycles with only a 5% loss of power.
"The results are very encouraging in showing that it's not all hopeless," to try to make lithium-air batteries, says Linda Nazar, a chemist at the University of Waterloo in Canada. But Nazar and others are quick to add that the new lithium-air batteries aren't yet ready for commercialization. For starters, Nazar says, gold is too heavy and too expensive to serve as the only cathode material in a practical cell. And over time, DMSO can react with lithium metal at the anode causing the electrolyte to break down. So even though the new results are heartening for the field, considerable work still lies ahead to make lithium-air batteries a real world technology.
Tesla is vaporware. They claim a lot of things.
I would fill up my Grand Cherokee with the 5.7L V8 about once a day on a cross country drive. 20 gallon tank.
If you have something like a VW Passat with the diesel and the 18.5 gallon tank, you would have about a 700 mile range, conservatively, before needing to fill up. And that’s with the EPA’s 40mpg highway number, which the VW’s tend to beat handily.
The new Nissan Altima would have excellent range as well with 38mpg highway and a 17.5 gallon tank.
Not sure what car would require 3 or 4 fill-ups a day to drive cross-country. Maybe a Ferrari?
Most common passenger cars would only need one fill-up a day as far as I can tell.
~300 miles for the top of the line model with the bigger battery.
~160 miles for the “cheap” model.
Clown car alert!
I did include the weasel words “up to.”
:^)
my van has gone through 700 “cycles” (fill ups)and has traveled close to 300,000 miles...
Get back to me when I can load 2000 lbs in to it and go 700 “cycles” with out more than 5% loss.
Oh.. and tow a 6000 lbs trailer when needed.
Gold cathodes? That’ll do wonders for the auto theft rate. At least the cretins would at least leave our bronze civic plaques and veterans’ graves bronze urns alone.
Cute car. I’m assuming they are sold in pairs - one for the left foot, one for the right foot.
I don’t see anything specific to a model of electric vehicle, the entire article appears to be about new battery technology.
They advertise the 0-60 time of the one with the smaller battery, and the range of the one with the giant battery...
What goes, “HMMMMMMMMMMMMMMMMMMM......BANG! BANG! BANG!........HMMMMMMMMMMMMMMMMM?”
A DRIVE-BY SHOOTING IN A PRIUS...............
Reminds me of the air batteries used in hearing aids, except that these can be recharged.
Ain’t kidding that they’ll need something more practical than gold for an electrode. If they’re talking enough gold that they are starting to complain about the weight, forget it. You’d spend a million dollars on your batteries very quickly. Is gold required in this one for the sake of its electrochemical properties? Or because it is a corrosion proof, highly conductive metal? And the DMSO eats up the other electrode, and they’re saying it loses 5% of its capacity in 100 cycles, better than older batteries but still... given how often a car is used we have to do better here.
Still this could be a bark up a more practical tree, in time.
“I dont see anything specific to a model of electric vehicle, the entire article appears to be about new battery technology.”
Who gives a rat’s *ss; what, do you own the web site or are you merely acting as police-officer-of-the-day?
Take a hike.
Batteries are all about using the best active materials configured for optimum ion transfer while preventing degradation of anode/cathode/electrolyte in the process —
simple. Oh, and it can’t “spontaneously dissociate” as we would say.
In practice, not so simple. Duracell spent in excess of $2.5million just to develop the “ultra” 9V coppertop. This gave you, the consumer, a big 14% more usable energy in that battery configuration alone.
Most battery technology change is incremental. Finding new materials that work together can be monumental. I applaud any steps forward in battery technology. The big boys - Duracell, Energizer, and Rayovac are too busy trying to survive cheap China/Korea product to put the $$$$’s into R&D like they used to.
It appears to me that you’re acting in that manner.
Do you eat with that mouth?
“Do you eat with that mouth?”
Ouch! I haven’t heard that retort since the third grade... you must be h*ll on the junior high debating society.
Sounds like you need to go lie down before you bust a vein.
Have a nice evening, Junior.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.