Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Molecules Imaged Most Intimately
ScienceNOW ^ | 23 August 2011 | Kim Krieger

Posted on 08/24/2011 12:32:32 AM PDT by neverdem

Enlarge Image
sn-quantums.jpg
Shadow of the orbitals. The pictures on the left show the highest occupied molecular orbital (top) and the lowest unoccupied molecular orbital (bottom) of pentacene, as mapped by the STM. The pictures on the right show the same orbital structures, calculated mathematically.
Credit: Adapted from L. Gross et al., PRL, 107 (2011)

If you took high school chemistry, then you undoubtedly recall the bizarre drawings of the "orbitals" that describe where in an atom or a molecule an electron is likely to be found. Resembling strange clouds with multiple lobes, the shapes and orientation of the orbitals control where electrons can go and how molecules can share or exchange them in chemical bonding and interactions. Now, a team of researchers has taken a key step toward directly measuring the orbitals of molecules lying on a surface, an advance that should let theorists test the results of their high-precision quantum mechanics calculations and could pave the way to designer molecular devices.

To make the breakthrough, a team of physicists at IBM Research Zurich in Switzerland and the University of Liverpool in the United Kingdom used a device called a scanning tunneling microscope (STM). It consists of a tiny metal finger with a tip only a few atoms wide that moves back and forth just above the surface of a sample. When scientists apply a voltage to the finger, electrons can hop between it and the surface through a process called quantum tunneling. In the simplest setup, the size of the current reveals the density of electrons in the surface, allowing it to be mapped out.

But that's not good enough to map the orbitals of an individual molecule. First off, the density of electrons doesn't directly reveal the mathematical structure of the orbital. That's because the density at a given point depends only on the mathematical square of the orbital, whereas the orbital can also have a positive or negative sign. In fact, it can generally be a complex number with both a "real" part that's an ordinary number and an "imaginary" part that's multiplied by the square root of one. That complex number defines the "phase" of that spot in the orbital. More practically, the run-of-the-mill STM doesn't have the spatial resolution to detect the fine details of the orbital. And the surface beneath the sample molecule is usually metal, too, and its smooth, featureless mash of electron orbitals can camouflage the molecule lying on top of it.

But Leo Gross and colleagues from IBM Research Zurich and the Surface Science Research Centre at the University of Liverpool in the United Kingdom found ways around these problems. Building on this prior research, they first isolated the molecules they wanted to study—organic molecules called pentacene and naphthalocyanine—by coating the surface below with an ultrathin layer of insulating salt. Then, to improve the resolution of the STM and make it sensitive to the phase of the molecule's orbital, the researchers stuck a single carbon monoxide molecule on the metal STM tip. Carbon monoxide has a simple but distinctive outermost orbital structure with two side-by-side lobes sticking out from the end of the tip, one with a positive phase and the other a negative phase.

That phase difference from one side of the tip to the other makes the current running through the tip sensitive to changes in the phase of the orbital of the molecule below, too. In fact, the current maxes out when the plus-and-minus lobes in the tip line up over plus-and-minus lobes in the orbital. The current drops to zero when the tip passes over a single lobe dense with charge because the charge and phase of two lobes of the carbon monoxide molecule interact with the molecule's orbital and cancel out, preventing electrons from tunneling through. That means the tip is particularly good at mapping out the "nodes" or places where the molecule's orbital changes sign. Those are also the places where the orbital goes to zero and the electron is sure not to be found. Thus, the researchers mapped the "nodal structure" of the underlying molecule's orbital, essentially sketching an outline of the spaces that contained electrons.

"They built up nice little pictures," says David Villeneuve, program leader of attosecond science at the National Research Council of Canada in Ottawa. The STM technique is a valuable new way to image a molecule, Villeneuve says. "Sometimes quantum calculations are not correct, and sometimes you see things you don't expect," he says. The researchers themselves hope the technique will lead to engineering designer orbitals for molecule-sized machinery.


TOPICS: Culture/Society; News/Current Events; Technical
KEYWORDS: microscopy; physics; stm; stringtheory
In fact, it can generally be a complex number with both a "real" part that's an ordinary number and an "imaginary" part that's multiplied by the square root of one.

IIRC, the author wanted the square root of negative one. After seeing the credit for the image, the following appears to be the title & abstract: High-Resolution Molecular Orbital Imaging Using a p-Wave STM Tip

Leo Gross, Nikolaj Moll, Fabian Mohn, Alessandro Curioni, Gerhard Meyer, Felix Hanke, and Mats Persson

Phys. Rev. Lett. 107, 086101 (2011) – Published August 15, 2011

Abstract

Individual pentacene and naphthalocyanine molecules adsorbed on a bilayer of NaCl grown on Cu(111) were investigated by means of scanning tunneling microscopy using CO-functionalized tips. The images of the frontier molecular orbitals show an increased lateral resolution compared with those of the bare tip and reflect the modulus squared of the lateral gradient of the wave functions. The contrast is explained by tunneling through the p-wave orbitals of the CO molecule. Comparison with calculations using a Tersoff-Hamann approach, including s- and p-wave tip states, demonstrates the significant contribution of p-wave tip states.

1 posted on 08/24/2011 12:32:39 AM PDT by neverdem
[ Post Reply | Private Reply | View Replies]

To: decimon; ShadowAce; AdmSmith; bvw; callisto; ckilmer; dandelion; ganeshpuri89; gobucks; ...

Thanks neverdem.

· String Theory Ping List ·
Periodic Table of Rejected Elements
· Join · Bookmark · Topics · Google ·
· View or Post in 'blog · post a topic · subscribe ·


2 posted on 08/24/2011 2:40:36 AM PDT by SunkenCiv (It's never a bad time to FReep this link -- https://secure.freerepublic.com/donate/)
[ Post Reply | Private Reply | View Replies]

To: SunkenCiv

Do these intimate pictures constitute chemistry porn?


3 posted on 08/24/2011 4:09:56 AM PDT by Waverunner (I'd like to welcome our new overlords, say hello to my little friend)
[ Post Reply | Private Reply | To 2 | View Replies]

To: SunkenCiv
Where can I buy some Xena (element 34 on your chart)?

Always wanted some of that.

4 posted on 08/24/2011 4:36:39 AM PDT by ZOOKER ( Exploring the fine line between cynicism and outright depression)
[ Post Reply | Private Reply | To 2 | View Replies]

To: ZOOKER

Always try Walmart first. Ask the greeter where it is located.:)


5 posted on 08/24/2011 4:54:31 AM PDT by bytesmith
[ Post Reply | Private Reply | To 4 | View Replies]

To: SunkenCiv
Then, to improve the resolution of the STM and make it sensitive to the phase of the molecule's orbital, the researchers stuck a single carbon monoxide molecule on the metal STM tip. Carbon monoxide has a simple but distinctive outermost orbital structure with two side-by-side lobes sticking out from the end of the tip, one with a positive phase and the other a negative phase.

Thats freakin brilliant. Amazing images.

6 posted on 08/24/2011 5:10:48 AM PDT by Paradox (Obnoxious, Bumbling, Absurd, Maladroit, Assinine)
[ Post Reply | Private Reply | To 2 | View Replies]

To: neverdem
"Sometimes quantum calculations are not correct, and sometimes you see things you don't expect," he says. The researchers themselves hope the technique will lead to engineering designer orbitals for molecule-sized machinery.

That's why better methods have been devised:
BlackLight has formed a wholly-owned subsidiary company, Millsian, Inc., dedicated to developing the molecular modeling applications of classical physics (CP), solving atomic and molecular structures based on applying the classical laws of physics, (Newton's and Maxwell's Laws) to the atomic scale. The set of individual bonds between two atoms apiece of a molecule are known as the functional groups. The functional groups (Table 1) of essentially all major classes of chemical bonding including those involved in most organic molecules have been solved in analytical form. By using these functional groups as building blocks, or independent units, a potentially infinite number of molecules can be solved. As a result, Millsian software can visualize the exact three-dimensional physical structure, calculate physical characteristics of a boundless number of molecules of any length and complexity, and facilitate the engineering of new pharmaceuticals and materials at the molecular level. The results obtained in real-time match the experimental values typically to the limit of measurement."

See MILLSIAN 2.0: A molecular modeling software for structures, charge distributions, and energetics of biomolecules in Phys. Essays 24, 200 (2011); doi:10.4006/1.3567145 (13 pages)

7 posted on 08/24/2011 5:24:48 AM PDT by aruanan
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

mark


8 posted on 08/24/2011 5:26:53 AM PDT by Cvengr (Adversity in life and death is inevitable. Thru faith in Christ, stress is optional.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: aruanan

Thanks for the links & text.


9 posted on 08/24/2011 8:56:06 AM PDT by neverdem (Xin loi minh oi)
[ Post Reply | Private Reply | To 7 | View Replies]

To: Paradox

Thanks Paradox.


10 posted on 08/24/2011 4:27:00 PM PDT by SunkenCiv (It's never a bad time to FReep this link -- https://secure.freerepublic.com/donate/)
[ Post Reply | Private Reply | To 6 | View Replies]

To: Waverunner

Oh sure, look on the bright side. ;’)


11 posted on 08/24/2011 4:28:57 PM PDT by SunkenCiv (It's never a bad time to FReep this link -- https://secure.freerepublic.com/donate/)
[ Post Reply | Private Reply | To 3 | View Replies]

To: El Gato; Ernest_at_the_Beach; Robert A. Cook, PE; lepton; LadyDoc; jb6; tiamat; PGalt; Dianna; ...
Scripps Research Scientists Reengineer an Antibiotic to Overcome...Antibiotic-Resistant Bacteria Check the structure of vancomycin.

Diet May Be Enough For Cholesterol Problems; Avoid Statin Side Effects

Learning information the hard way may be best 'boot camp' for older brains

To Get to Cats, Common Parasite Hijacks Rats’ Arousal Circuitry

FReepmail me if you want on or off my health and science ping list.

12 posted on 08/24/2011 10:37:17 PM PDT by neverdem (Xin loi minh oi)
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

Interesting. Thanks for sharing.


13 posted on 08/25/2011 8:28:42 AM PDT by iceskater (I am a Carnivore Conservative - No peas for me. (h/t N.Theknow))
[ Post Reply | Private Reply | To 12 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson