Posted on 06/13/2008 11:30:51 PM PDT by neverdem
New evidence shows that the brains of adults with autism are "wired" differently from people without the disorder, and this abnormal pattern of connectivity may be responsible for the social impairments that are characteristic of autism.
Using functional magnetic resonance imaging, a team of researchers affiliated with the University of Washington's Autism Center also found that the most severely socially impaired subjects in the study exhibited the most abnormal pattern of connectivity among a network of brain regions involved in face processing.
"This study shows that these brain regions are failing to work together efficiently," said Natalia Kleinhans, a research assistant professor of radiology and lead author of the paper published in the journal Brain. "Our work seems to indicate that the brain pathways of people with autism are not completely disconnected, but they are not as strong as in people without autism."
The study is the first to look at brain connectivity and social impairment, and focused on how the brain processes information about faces. Deficits in face processing are one of the earliest characteristics to emerge in people with autism.
The research team led by Elizabeth Aylward, a UW professor of radiology, examined connectivity in the limbic system, or the network of brain regions that are involved with processing social and emotional information. Participants in the study included 19 high-functioning adults with autism who had IQs of at least 85. They ranged in age from 18 to 44 and were compared with an age- and intelligence-matched sample of 21 typically developed adults. The group with autism spectrum disorder included eight individuals diagnosed with autism, nine with Asperger's syndrome and two diagnosed with pervasive developmental disorder not otherwise specified. The level of social impairment for each autistic participant was drawn from records of clinical observations and diagnoses that confirmed that each had autism.
Each participant had his or her brain scanned while looking at pictures of faces or houses. Participants were shown four series of 12 pictures of faces and a similar number of series showing houses. Each individual picture was seen for three seconds. Occasionally the same face or house picture was repeated, and participants were told to press a button when this occurred.
There was no significant difference on the two groups' performance, because the task was so basic, said Todd Richards, a professor of radiology and co-author of the paper. "Differences might have shown up if they had been asked to do something more complicated."
However, the two groups exhibited different patterns of brain activity. The researchers focused on the fusiform face area of the brain, a region that is involved in face identification. Compared to the participants with autism, the typically developing adults showed significantly more connectivity between the fusiform face area and two other brain regions, the left amygdala and the posterior cingulate. In addition, autistic participants who had the largest social impairment showed the lowest level of connectivity between the right fusiform face area and the left amygdala and increased connectivity between the right fusiform face area and the right inferior frontal gyrus.
"This study shows that the brains of people with autism are not working as cohesively as those of people without autism when they are looking at faces and processing information about them," said Kleinhans.
Source : University of Washington
ASD PING
I’m wired differently, but I don’t have autism.
Potential new weapon against TB: free cell minutes
FReepmail me if you want on or off my health and science ping list.
Very interesting. Thanks for the post/ping.
I'm no professional but somehow if he is "autistic" now, autism is not so bad.
He just graduated from HS and heading to college to study engineering. He aced math in both ACT and SAT. He's also a good student in other areas. He was popular in HS, being on the Student Council all four years as well as being a homecoming king candidate.
Autism leaves me baffled.
My son was very hyperactive as a young child and afraid of loud noises. When my daughter was a toddler, she insisted on staying by my side all the time. My son would wander off. It’s like he had no attachment to me. He couldn’t stand being touched unless it was scratching, so I scratched him all the time. Hugs or pets would send him screaming. Head banging was constant.
By age 5, he stopped eye contact. When you’d talk to him, he’d try to run off and, when physically held in place and forced to make eye contact, he could only do it with glances. He couldn’t stand there and look you in the eye. By age 7 he began “flapping” and “whooping”. The vacuum cleaner became his enemy. When there was too much stimulation he’d make a very weird smile (A combination of smile and grimace) and head under the bed, the rug, the closet - anything to get away.
I finally was able to get him to a neurologist. The Neurologist saw classic Autism symptoms or possibly Asperger’s syndrome, but said that he wanted to look deeper before a diagnosis. “First we look at the blood, then we look at the brain.”
A month later the kid had a diagnosis of Celiac disease. We took him off gluten and within *two* weeks, he was a perfectly normal boy.
I’ve since read of other children like my son who react to gluten and/or dairy proteins. But, for the life of me, I cannot understand it. How in the heck can those proteins cause the brain to malfunction in such a way to so closely mimic Autism??
Are the children who continue to be symptomatic even after the removal of those proteins simply reacting to something else in their diet or environment? Or is it a case where the reaction started and can’t stop even after the removal of the precursor?
And why can some children completely recover so quickly after the removal of the poison if their brains are completely rewired?
My son’s IQ was measured at 138 when he was 6 and (as I understand it) this is not the norm for Autistic kids. Could this be a sign that in high-functioning kids the problem isn’t true Autism, but a malfunctioning protein?
Too many questions about this disease!
Amaranth: a Healthy Grain for Vegetarian Recipes
Has no Gluten...but has high levels of Protein.
Thanks for the ping.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.