Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Splitting Light With Artificial Muscles Could Bring New Generation Of Color Displays
Spacemart.com ^ | 8/23/06 | Staff Writers

Posted on 08/24/2006 11:00:46 AM PDT by Reaganesque

Zurich, Switzerland, (SPX) Aug 23, 2006

Scientists have unveiled a new technology that could lead to video displays that faithfully reproduce a fuller range of colors than current models, giving such a life-like viewing experience that it could be hard to go back to your old TV. The invention, based on fine-tuning light using microscopic artificial muscles, could turn into competitively priced consumer products in eight years, the scientists say.

In ordinary displays such as TV tubes, flat-screen LCDs, or plasma screens, each pixel is composed of three light-emitting elements, one for each of the fundamental colors red, green, and blue. For example, shades of orange and yellow are displayed by mixing different amounts of red and green. Unless you look closely, the color elements in a pixel are indistinguishable: the eye sees a single, composite color.

The fundamental colors in each pixel are fixed, and only their amounts can change -- by adjusting the brightness of the color elements -- to create different composite colors. That way, existing displays can reproduce most visible colors -- but not all. For example, current displays do not faithfully reproduce the hues of blue one can see in the sky or in the sea.

"State-of-the-art displays such as LCD displays can only reproduce a limited range of colors because the three mixing colors red, green and blue are determined during the time of production," said Manuel Aschwanden, a nanotechnology expert at the Swiss Federal Institute of Technology (Eidgenossische Technische Hochschule, or ETH) in Zurich, Switzerland. Aschwanden and his colleague Andreas Stemmer figured that one can overcome such limitations by changing the fundamental colors themselves, not just their brightness. To obtain different colors, they used an optical trick called diffraction.

In their setup, white light hits a so-called diffraction grating, a pattern of equally spaced grooves on a surface. Their grating is a rubbery, one-tenth of a millimeter wide membrane, with one side molded into a shape that resembles microscopic pleated window shades. The membrane consists of an "artificial muscle," a polymer that contracts when voltage is applied.

White light contains the full spectrum of colors of the rainbow, which correspond to all wavelengths of light. But when white light hits a diffraction grating, different wavelengths fan out at different angles.

"It's like when you hold a CD in direct sunlight, and you rotate it," Aschwanden said. Like the microscopic tracks on a CD surface, the grooves on the artificial muscle split white light into a rainbow of colors. But instead of rotating the surface to obtain different colors, the ETH team adjusts the light's angle by applying different voltages to the artificial muscle.

As the membrane stretches or relaxes, the incoming light "sees" the grooves spaced closer or tighter. All the angles of reflection change, so the entire fan of wavelengths turns as a whole. The desired color can then be isolated by passing the light through a hole: As the hole stays fixed, different parts of the spectrum will hit it and go through it.

To obtain composite colors, every pixel would use two or more diffraction gratings. By this method, a display could produce the full range of colors that the human eye can perceive, Aschwanden said.

Tunable diffraction gratings are routinely used in applications such as fiberoptic telecommunications and video projectors, but existing technologies are based on hard materials rather than artificial muscles, limiting their stretchability to less than a percentage point. By contrast, artificial muscles can change their length by large amounts. Correspondingly, the fan of reflected light will move enough for the part of the beam going through a hole to change from one end of the spectrum to the other.

Getting a full range of colors requires a source of "true" white light to begin with -- rather than a mere combination of red, green and blue that looks like white light to the human eye. For that purpose, the technology could exploit a new generation of white LED lights that have recently been developed, Aschwanden said.

Though Aschwanden and Stemmer have so far just a proof of concept, it demonstrates the feasibility of the technology, Aschwanden said. With enough investment, it could turn into consumer products, perhaps in less than eight years, he said. "Once you have one pixel, it doesn't take too long to develop a new product."

The research appears in the online version of the journal Optics Letters and will be published in print in the September 1 issue. The team is now improving the technology to bring it closer to industrial application.

In particular, the artificial muscles described in the Optics Letters paper operated at several thousand volts, while in a consumer product that would have to come closer to the 120 volts of household AC. Since the paper was accepted, the team has already reduced the voltage to 300 volts, and new materials currently being developed could allow voltage to drop further, Aschwanden said.


TOPICS: Culture/Society; Miscellaneous
KEYWORDS: artificial; color; display; monitors; muscle; tech; ultrahighdefinition
Amazing!
1 posted on 08/24/2006 11:00:50 AM PDT by Reaganesque
[ Post Reply | Private Reply | View Replies]

To: KevinDavis; AntiGuv

Tech and Space ping!


2 posted on 08/24/2006 11:03:34 AM PDT by Reaganesque
[ Post Reply | Private Reply | To 1 | View Replies]

To: Reaganesque
"I am Hans!"
"Und I am Franz!"
"We are here -- TO PUMP YOU UP!"
"Your little girlie muscles make me cry for you!"
"Ja! You cannot split light with arms like that!"
"You need artificial muscles! Like us! We can split light!"
"We could show you a color display from our muscles!"
"But that might scare the girlie man."
"Ja!"
3 posted on 08/24/2006 11:05:52 AM PDT by ClearCase_guy ( “I'm the Emperor, and I want dumplings!” (German: Ich bin der Kaiser und will Knödel.))
[ Post Reply | Private Reply | To 1 | View Replies]

To: Reaganesque

8 years? Just long enough for everyone to buy LCD and Plasma. It needs to be 1-2 years. I would love to see one of these displays, it sounds and should look incredible.


4 posted on 08/24/2006 11:06:49 AM PDT by southlake_hoosier (.... One Nation, Under God.......)
[ Post Reply | Private Reply | To 2 | View Replies]

To: Reaganesque

Wow, imagine the high fidelity porn!


5 posted on 08/24/2006 11:08:30 AM PDT by Paradox (The "smarter" the individual, the greater his power of self-deception.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: PatrickHenry; b_sharp; neutrality; anguish; SeaLion; Fractal Trader; grjr21; bitt; KevinDavis; ...
FutureTechPing!
An emergent technologies list covering biomedical
research, fusion power, nanotech, AI robotics, and
other related fields. FReepmail to join or drop.

6 posted on 08/24/2006 11:09:37 AM PDT by AntiGuv ("..I do things for political expediency.." - Sen. John McCain on FOX News)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Reaganesque

As someone that only came to accept color TV about 6 years ago, I look forward to a time when it can be made to appear less artificial.


7 posted on 08/24/2006 11:10:16 AM PDT by ansel12 (Life is exquisite... of great beauty, keenly felt.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: southlake_hoosier

It's going to come in behind SEED screens, which are likely to hit the market sometime in 2007 and will offer huge advantages over either LCD or plasma displays in size, viewing angle, brightness, resolution, contrast and ultimately, cost.

By the way, SEED, or SED sometimes means "Surface Electron-emitter Display".


8 posted on 08/24/2006 11:13:03 AM PDT by John Valentine
[ Post Reply | Private Reply | To 4 | View Replies]

To: southlake_hoosier

The color reproduction capabilities of this technology will make LCD and Plasma pale in comparison (pun somewhat intended).

In eight years, if everybody already has LCD and Plasma, then everybody will STILL go out and buy these things.


9 posted on 08/24/2006 11:15:25 AM PDT by Omedalus
[ Post Reply | Private Reply | To 4 | View Replies]

To: John Valentine
From what I could find of "SED" screens on a brief search of the Internet, it would seem that SED is merely shrinking the pixel which only gives of the red, blue, yellow spectrums whereas the technology described above uses the whole spectrum. Maybe I missed something, I don't know. Either way, it would appear that tvs and computer monitors are about to get much, much better.
10 posted on 08/24/2006 11:19:04 AM PDT by Reaganesque
[ Post Reply | Private Reply | To 8 | View Replies]

To: Reaganesque

Seriously cool!


11 posted on 08/24/2006 11:23:55 AM PDT by TChris (Banning DDT wasn't about birds. It was about power.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Reaganesque

bump for later


12 posted on 08/24/2006 12:01:11 PM PDT by LiteKeeper (Beware the secularization of America; the Islamization of Eurabia)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Reaganesque

SED does a little more than that..

Mainly, SED is real technology with a production factory basically complete in China and eady to go with 52 inch screens.

Even if this new diffraction technology can be made to work at scale and at a marketable cost, it will still have pixels and discrete chroma, brightness and hue values because it will rely on digital signals - thew same signals that drive other screens. It can't have infinitely variable color. The signal won't support it.

And you are in for a fairly long wait. I don't know of a screen technology that has made it from the lab to market in less than ten years.


13 posted on 08/24/2006 2:07:27 PM PDT by John Valentine
[ Post Reply | Private Reply | To 10 | View Replies]

To: Omedalus
In eight years, if everybody already has LCD and Plasma, then everybody will STILL go out and buy these things.

Great, then LCD and Plasma prices will be sane and I will buy one of those.

14 posted on 08/24/2006 3:30:26 PM PDT by Colorado Doug
[ Post Reply | Private Reply | To 9 | View Replies]

To: Colorado Doug

Great, then LCD and Plasma prices will be sane and I will buy one of those.

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

My honest opinion is that there are better looking screens now than LCD or Plasma. I like the Sony Grand Wega much better and on a small screen I still like the old standby cathode ray HDTV better.


15 posted on 08/24/2006 4:43:02 PM PDT by RipSawyer (Does anybody still believe this is a free country?)
[ Post Reply | Private Reply | To 14 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson