Posted on 09/23/2005 2:19:38 PM PDT by newgeezer
Funny thing about hydrogen cars: If we were all driving them now, the President's FreedomCAR initiative would be anteing up its $1.8 billion to invent the gasoline engine. Freeing us from hydrogen would be "the moral equivalent of war," to use the words of a long-past energy-crisis president. Gasoline would be the miracle fuel. It would save money by the Fort Knoxful. It would save energy by the Saudi Arabiaful.
To see why this is so, let's look at the numbers. And for once, we're talking about a miracle fuel without speculation. We can see exactly how the "gasoline economy" would work by looking back to a year that's already happened. In 2000, gasoline consumption averaged 8.47 million barrels per day. Gas contains 5.15 million British thermal units of energy per barrel. For big numbers like this, it's customary to think in "quads," or quadrillion BTUs. So the gasoline energy used by motor vehicles in the year 2000 worked out to 16 quads.
Now let's do the same driving in hydrogen cars. Hydrogen is the most plentiful element on earth, but there's no underground pool of it we can drill into. All of nature's hydrogen atoms come married to other atoms in earnestly stable relationships. It takes an industrial process to break apart those marriages to obtain pure hydrogen in a form that can be used by fuel cells.
Think of fuel cells as black boxes into which we put hydrogen on one side and oxygen from the atmosphere on the other. Out the bottom come water and a small electrical current. There is no such thing as free power, of course. If you get power out when you let hydrogen and oxygen get married in a fuel cell, then you must put power into the process of divorcing them.
The industrial divorcing of water molecules is known as electrolysis. This is fuel by immaculate conception, according to most greenies. To make the chemistry work, you must put in 39.4 kilowatt-hours of energy for each kilogram of hydrogen you expect to liberate. Unfortunately, the electrolysis process is only 70 percent efficient. So the total energy input must be 56.3 kilowatt-hours per kilogram of hydrogen.
This energy to be added must come from somewhere. The U.S. has an excellent supply of coal. Coal-fired powerplants are about 40 percent efficient, so 140.8 kilowatt-hours of coal energy are required to net the 56.3 kilowatt-hours of electricity to produce our one kilogram of hydrogen.
My source for these calculations is Donald Anthrop, Ph.D., professor emeritus of environmental studies at San Jose State University, in a Cato Institute report.
In a perfect world, the fuel cell in our car would produce 33.4 kilowatt-hours of useful energy from each kilogram of hydrogen, and 6.0 kilowatt-hours would go to water vapor, giving you back your net investment of 39.4 kilowatt-hours at the electrolysis plant. But the world is not perfect, and the best fuel cells are only about 70 percent efficient. So the energy yield is 23.3 kilowatt-hours.
One more loss must be reckoned with. Hydrogen is a gas. It's lighter than air. Remember, it was the stuffing for the airship Hindenburg. Hydrogen gas (at atmospheric pressure and room temperature) containing the same energy as a gallon of gasoline takes up 3107 gallons of space. To make a useful auto fuel, Anthrop says it must be compressed to at least 4000 psi (Honda uses 5000 psi in the FCX; GM is trying for 10,000). The energy required to do that further trims the yield to 17.4 kilowatt-hours. Pressures higher than 4000 would increase miles available from each fill but cost more energy for compression. Liquefying hydrogen, which BMW advocates, costs upward of 40 percent of hydrogen's energy content.
So far, the numbers say this: Starting with 140.8 kilowatt-hours of energy from coal gives you 17.4 kilowatt-hours of electrical power from the fuel cell to propel the car, or an energy efficiency of 12 percent.
Anthrop goes on to estimate the fuel-cell power needed for the 2.526 billion miles driven in the U.S. in 2000. According to Southern California Edison, the electricity needed per mile for passenger cars is at least 0.46 kilowatt-hour. For the whole U.S. vehicle fleet, that works out to 1.16 trillion kilowatt-hours. You'll need 32 quads of coal, which is twice the energy actually consumed in 2000 with gasoline.
As for global-warming implications, the use of hydrogen from coal instead of gasoline would produce a 2.7-fold increase in carbon emissions.
Of course, all of today's electricity doesn't come from coal. But even with the current mix of sources, including natural gas, nuclear, hydro, solar, and wind, that much hydrogen would raise our carbon output to about twice the 2000 level.
The enviros like to talk about renewable energy. Anthrop has done those calculations as well. Hydro power is our largest source of green electricity, but it would take 15 times the current amount for an all-hydrogen vehicle fleet. Given the pressure to remove existing dams, it's unlikely we'll have any additional hydroelectricity.
Photovoltaic cells? Anthrop says it takes about eight years of cell output to make back the electrical power originally consumed in manufacturing the cell.
Wind power? It defies calculation, in part because wind blows only intermittently.
Virtually all the hydrogen produced today, about 50 million tons worldwide, comes from natural gas. The process, called "steam reforming," is only about 30 percent efficient, much less, he says, "than if the natural gas were simply burned" in the generating plant.
Producing enough hydrogen to replace gasoline by reforming natural gas would increase our gas consumption by 66 percent over 2002's usage. And don't forget the carbon emissions.
That leaves the unspeakablenukes.
Presumably, BMW knows all of this, yet it has been thumping the tub for hydrogen since the 1970s. Along with hundreds of other invitees, I attended BMW's hydrogen hootenanny at Paramount Pictures in 2001. Mostly, it amounted to a day of corporate preening before California's greenies. Still, BMW is famously brave in confronting technology. Does it have a plan? I summed up the science of this column, in writing, and passed it up through BMW's official channels, along with the obvious question: Where will the necessary quads and quads of energy come from for hydrogen cars? That was nearly two years ago. BMW has not answered.
No answer, of course, is the anwer.
Ah, go on! That's nothing. Have you see the new Mitsubishi Cantaloupe?
The next wave for the internal combustion engine is ultra-pure low-sulfur diesel fuel, plus computerized diesel management and exhaust handling.
The engines will be small, 3-4 cylinders 2-liter max, ...about 20 BHP, and will be used in a hybrid configuration to both drive the car as needed and to charge the batteries for electric motors at each wheel. It will be, unlike the PRIUS, a plug-in set up that can be charged overnight to complement dynamic charging on coast or while braking.
And this makes sense because we can use our coal and nuclear resources to provide the elctrical energy needed to supplement fossil, or vegetable fuels. A big plus is that diesel needs somewhat less refinement than gasoline, and can be mixed with bio-fuels.
A peppy family car in this configuration might deliver 55mpg, overall, or even more. Read it and weep, O Sons of Allah! This is already happening in Europe. I suspect that if Chrysler could get enough small diesels from D-B, they would be trying it now.
BTW, today's IC engines are absolutely fabulous, with micro-finishes and tolerances managed out to the 100 Thousandth, they last forever and make even the cheapest flivvers one hell of a lot hotter than many Americans can handle.
One complaint: I cruise my ancient 240,000-mile M-B at 75. I am being continually left in the dust by Honda Civics, which showing their huge rear exhaust pipes, blow my doors off at easily 100+mph, and then disappear over the horizon. What's with this trend?
LOL! We had this wonderful old junker of a Audi when we lived in Germany (you know, back when the earth's crust was cooling) and one day my husband decided to "really try it out" on the Autobahn. So, peddle to the metal, he let 'er rip. That Audi gave it her all: 35mph-60mph in 45 seconds! My husband laughed that cruel laugh of triumph you husband's have.
"There!" he crowed. "And you said she'd never go over 45[mph]!"
Bookmark for later
ping
There are at least two assumptions in this hit piece that are either unwarranted or uncertain.
First, there is no reason that we cannot use nuclear power plants to break the chemical bonds of the hydrogen compounds, such as water.
Second, it is far from certain that the hydrogen will have to be compressed. There are some promising technologies that allow for storage chemically.
One possibility (mentioned in this month's Scientific American) is that cars could be a lot lighter than they are today by using various space-age materials that are both far lighter and stronger than what we use today. And if you have a lighter car, you can use a lighter and smaller engine to move it. Combine light small cars with hybrid technology and biofuels, and we can tell the Saudis to drink their darned oil for all we care.
ping
Hydrogen does have a very high mass energy density. This makes it a very good rocket fuel. But rockets are not a good way to transport people on their daily commute.
The weight of a fuel is not so important in a surface vehicle application. The volume the fuel takes up is. Hydrogen, even liquefied hydrogen, has a very low volumetric energy density. This makes it a lousy transportation fuel.
Add to it's low volumetric energy density the inherent inefficiencies of using hydrogen as a fuel and it becomes down right impossible. And trying to get around those inefficiencies (and deficiencies) by using fossil fuels to produce hydrogen only produces more wasted energy and pollution as burning the fossil fuels directly.
There are better renewable and alternative fuels out there. But the enviro-nitwits have dedicated themselves to hydrogen. And the fossil fuel companies are more than willing to jump on the hydrogen bandwagon. After all, even though the enviro-nitwits haven't cottoned on yet, the fossil fuel companies have already figured out the "hydrogen economy" means more consumption of their fossil fuel products, not less.
This energy could be mostly recaptured. Also, new materials will soon enable much higher pressures so this concern is not a reasonable one.
Yes, plug-in diesel hybrids are a good next step, but the next after that is to eliminate the mechanical drive train altogether.
"Of course, all of today's electricity doesn't come from coal"
Don't they use coal up where Teddy Kennedy lives? Now I know why his brain ain't working. LOL
But energy goes into the manufacture of gasoline. What's that number?
Last time I looked, various anhydride chemicals were co-products of hydrogen generation from natural gas sources. I haven't heard of natural anhydrides being a hydrogen source. Explain the process please.
Frankly, we've got plenty of fossil fuel, just little will (thanks to the Libs) to extract it...
The report by the RAND Environment, Energy and Economic Development program says that between 500 billion and 1.1 trillion barrels of oil are technically recoverable from high-grade oil shale deposits located in the Green River geological formation, covering parts of Colorado, Utah and Wyoming.
The mid-point of the RAND estimate 800 billion barrels is three times the size of Saudi Arabia's oil reserves. This is enough oil to meet 25 percent of America's current oil demand for the next 400 years.
Download the full report (pdf)
There's no underground pool of gasoline either... Crude has to be refined...
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.