Posted on 12/18/2003 8:28:33 AM PST by cogitator
When Nerilie Abram first arrived at the Mentawai Islands southwest of Sumatra in 2000, she was expecting to find a thriving coral reef and its ecosystem. Instead, she and her co-workers found dead coral with no fish. Local people told Abram that the coral began to die in 1997, an El Niño year, when an algal bloom had smothered the reef.
But the upwelling warm water from El Niño alone was not strong enough to create the bloom, Abram says. And evidence from coral cores showed the reef had survived even stronger upwellings. So we looked for a stronger nutrient source, she says, and found it in the wildfires that raged across Indonesia that year. The iron from heavy smoke in the region fertilized the red tide, enhancing the effects of warmer water conditions.
PHOTO CAPTION: In 2002, researchers observed bleached corals for the first time in the Northwestern Hawaiian Islands. In Hawaii and elsewhere, communities rely on reefs for fish and tourism dollars. They may also serve as colonizers for reefs in other regions. Photo courtesy of NOAA.
That conjunction of events worked to asphyxiate the reef, which has not yet recovered. And as climate change and human impacts shift forest conditions, wildfires are only going to be worse, Abram says. On a broader scale, the combined threats to reefs are all increasing.
Abram and her co-workers published their detective work this summer; their report was one of several published in Science on Aug. 15, in a series of papers delivering a broader picture on coral reefs. One group reported the loss of 80 percent of Caribbean coral cover over three decades, much of it from disease. Coral reefs are in danger, scientists wrote, and their recovery, when compared to historic coral reefs, is not assured. Though action is necessary to preserve reefs today, researchers do not know enough about how reefs function to guarantee that conservation and remediation will work.
People have been talking about the decline in coral reefs for 10 years, but nobody really showed the long-term decline, says John Pandolfi, lead author on one of the Science papers, and a reef paleo-ecologist at the Smithsonian Institutions National Museum of Natural History. But the global decline started centuries ago, wrote Pandolfi and his co-authors, and followed the same general trend for each major reef system they reviewed.
The team used archeological and fossil records to show that in coral reef ecosystems around the world, first the large herbivores and predators disappear, followed by declines in smaller creatures. Then the coral and resident suspension feeders begin their own descents. The team pegged the declines to human cultural periods, from the tropical western Atlantic to the Red Sea and northern Australia: Hunting and gathering marks the beginning of the end. The additional stresses of human overfishing and agricultural runoff both polluting and over-fertilizing ocean waters have sent coral reef ecosystems further down their spiral.
This global deterioration may have left corals more susceptible to warming sea-surface temperatures, enhanced by global climate change, the researchers argue. Temperature fluctuations have immediate effects on the symbiotic relationship between corals and their resident microbes, known as zooxanthellae. The microbes, which were only recently reclassified from one species to four genetically different groups, each with different tolerances for different temperature ranges, remain somewhat of a mystery to biologists. These single-celled algae provide their coral hosts with their products from photosynthesis, and the coral give back excretion products.
Yet the microbe-coral coexistence is not always friendly. Corals sometimes expel their microbes, particularly in warmer than usual water, taking on a bleached appearance. Fossil evidence suggests that this bleaching occurs for shallow coral reefs in rising waters, as they become too deep for their microbes to obtain enough sun. Or too much sun leads to overexposure of the zooxanthellae to UV radiation, with the same result. Only sometimes do reefs recover; why and how is unknown.
Bleaching and coral disease are symptoms of prior debilitation, Pandolfi says, like a hospital patient getting a secondary exploitative disease. We need to keep it in context: Coral reefs are very sick right now and have been for a long time, he says. Bleaching and disease have not caused this major decline in coral reefs, but fishing and environmental pollution, among other conditions, have.
Pandolfi and others have looked to fossil coral reefs for answers as to how modern reefs might respond to inclement conditions. Some modern species can be traced across the Quaternary, says Brian Rosen, a coral reef researcher at the Natural History Museum in London (and co-author of another paper in Science with Pandolfi and others). You can start matching the history of reefs in any one area to global temperature plots and sea-level changes, he says, even if the fossil record does not preserve individual bleaching events or other shorter time-scale disasters.
In the past, the corals themselves changed, stretching or retracting their geographic outer limits as temperatures warmed. We see, in a sense, recovery or survival on big time scales, he says. But if you are managing the Great Barrier Reef, it doesnt matter if someday reefs will colonize the coasts of France.
That ability to adapt, preserved in the fossil record, means that reefs will somehow survive on Earth, says Roger Griffis, the coordinator for the Coral Reef Conservation Program under the National Oceanic and Atmospheric Administration. These systems will change and adapt, he says, but may be really different looking than they are now. However, while the amount of change and temperature variation has been as high in the past as projected today, Rosen says, researchers do not yet have evidence as to whether corals will be able to survive the current fast rate of global climate change.
The disease epidemics that swept across the Caribbean in the 1980s led to an 80 to 90 percent loss of Acropora species, once the most common shallow species of coral. Thats like losing your most common tree in a forest, Griffis says.
Management practices need to focus quickly on what factors most harm coral reefs and which ecosystems seem most resilient to change, Griffis says. Corals have a better chance of surviving things like temperature changes if they are less stressed from other things like overfishing, he says.
Griffis and other representatives from the United States and its territories met last October for the 10th Coral Reef Task Force meeting, hosted by Guam and Saipan (in the Northern Mariana Islands), two island economies that rely heavily on coral reef tourism. The task force hammered out several resolutions and the next steps for reef management. Management plans will have to limit the impacts of fishing, along with other stresses like pollution and runoff.
In the meantime, fish are beginning to return to the Mentawai Islands reef, Abram says, and in 2001, small corals began growing. But, she says, in the best-case scenario, if there are no other stresses on the reef, it will take 50 to 100 years to recover its several-meters thickness. And the stresses from climate change, El Niño sea-surface temperature changes, fishing, agricultural runoff and even fires are unlikely to dissipate soon.

Sadly, that might mean that in 5 years we will only find Nemo in domestic coral tanks. :-)
Let me know if you wish to be added or removed from this list.
I don't get offended if you want to be removed.
Just because the Greens are on the left does not mean conservatives have to be anti-environment. Tearing the reefs up to make jewelry is just a silly idea. Pretty much on par with killing off the last tigers so the Chinese can have their traditional viagra.
Aye, so it would.
How fast can he get it to grow (I ask, knowing that there are fast and slow-growing corals)?
Sadly, this is just a minor threat to the reef environment. The aquarium trade (as well as overfishing for food supply fish) is a much more serious threat.
Oh, I agree with you there. But I am a conservationist from a sportsman's perspective. Hunters and anglers have long been the traditional conservationist and there are very good and sound reasons for that. It is no different with the reefs. A good, healthy reef can be an economic boon for the surrounding area. Look at the Maldives. Coral atolls. Their entire economy revolves around diving and the hoardes of people who view the Maldives as Diving Mecca so they take the health of their reefs very seriously. This is all I'm talking about. There's nothing negative about having healthy reefs.
To contrast that, you'd find environmentalists who want to ban diving on the reef all together. But I don't think this is any kind of solution. When there is an economic incentive to taking care of the reef, people will do so. When you remove that incentive by banning diving there will be nobody really interested in taking care of it.
It's important to note here though that I don't support Kyoto not even if I have a hundred hand wringers telling me this is the only way to save the reefs. I'm mostly talking about using reefs to anchor ships, pulling up corals to sell in gift shops, polluting the reefs etc. Islands and coastal nations that have reefs and take care of them will find that their economic stock rises with sportsmen who enjoy diving on the reefs.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.