Posted on 03/25/2019 8:55:45 PM PDT by BenLurkin
To investigate Faraday waves, the team confined BECs to a linear one-dimensional waveguide, resulting in a cigar-shaped BEC. The researchers then shook the BECs using a weak, slowly oscillating magnetic field to modulate the strength of interactions between atoms in the 1D waveguide. The Faraday pattern emerged when the frequency of modulation was tuned near a collective mode resonance. But the team also noticed something unexpected: When the modulation was strong and the frequency was far below a Faraday resonance, the BEC broke into "grains" of varying size. Rice research scientist Jason Nguyen, lead co-author of the study, found the grain sizes were broadly distributed and persisted for times even longer than the modulation time.
"Granulation is usually a random process that is observed in solids such as breaking glass, or the pulverizing of a stone into grains of different sizes," said study co-author Axel Lode, who holds joint appointments at both TU Wien and the Wolfgang Pauli Institute at the University of Vienna.
Images of the quantum state of the BEC were identical in each Faraday wave experiment. But in the granulation experiments the pictures looked completely different each time, even though the experiments were performed under identical conditions.
Lode said the variation in the granulation experiments arose from quantum correlationscomplicated relationships between quantum particles that are difficult to describe mathematically.
(Excerpt) Read more at phys.org ...
For a layman, what are the practical applications of this in the future?
No worries, twinkles.
Do you ever notice strange little things like this in articles?
Nguyen at Rice found grains...
Reminds me of an article floating around here some years back where there was a Dr Zwiebel doing odor research.
Closest I ever came in real life was meeting a network engineer named Lan.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.