Posted on 08/23/2018 6:26:43 PM PDT by BenLurkin
In a marriage of quantum science and solid-state physics, researchers at the National Institute of Standards and Technology (NIST) have used magnetic fields to confine groups of electrons to a series of concentric rings within graphene, a single layer of tightly packed carbon atoms.
This tiered "wedding cake," which appears in images that show the energy level structure of the electrons, experimentally confirms how electrons interact in a tightly confined space according to long-untested rules of quantum mechanics. The findings could also have practical applications in quantum computing.
Graphene is a highly promising material for new electronic devices because of its mechanical strength, its excellent ability to conduct electricity and its ultrathin, essentially two-dimensional structure. For these reasons, scientists welcome any new insights on this wonder material.
The researchers, who report their findings in the Aug. 24 issue of Science, began their experiment by creating quantum dotstiny islands that act as artificial atomsin graphene devices cooled to just a few degrees above absolute zero.
Electrons orbit quantum dots similar to the way these negatively charged particles orbit atoms. Like rungs on a ladder, they can only occupy specific energy levels according to the rules of quantum theory. But something special happened when the researchers applied a magnetic field, which further confined the electrons orbiting the quantum dot. When the applied field reached a strength of about 1 Tesla (some 100 times the typical strength of a small bar magnet), the electrons packed closer together and interacted more strongly.
As a result, the electrons rearranged themselves into a novel pattern: an alternating series of conducting and insulating concentric rings on the surface. When the researchers stacked images of the concentric rings recorded at different electron energy levels, the resulting picture resembled a wedding cake, with electron energy as the vertical dimension.
(Excerpt) Read more at phys.org ...
All I got out of that was a novel about someone named “Graphene” who launches a quantum dot.com about baking a cake.
Was it good?
Graphene has been a highly promising material for many years.
Standard Model wins again.
You missed the part where Graphene drives 1 Tesla.
Graphene ping :>)
This is the graphene ping list.
Click Private Reply below to join or leave this list.
Interesting: 10 Uses for Graphene.
Thanks BenLurkin. I've always liked that Dolly Parton song about graphene.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.