Posted on 01/01/2014 3:19:55 PM PST by 2ndDivisionVet
* A double world-first breakthrough in metal manufacturing
* University uses 3D printer to make parts for aerospace and automobiles
* Low-cost titanium powders have made it possible to 3D print automotive parts for the very first time
To date, the 3D printing revolution has focused on the use of plastics cheap printers' feedstock and high throughput. Until now 3D printing with metal has been prohibitively expensive because of the cost of titanium powders which currently sell for $200-$400 per kilogram.
Rotherham based company Metalysis have developed a new way of producing low-lost titanium powder, which heralds a new era in additive layer manufacture, and will see greater use of titanium in components across the automotive, aerospace and defence industries.
The Renishaw 3D printer, which is based at the Mercury Centre within the Department of Materials at the University of Sheffield, made the parts, demonstrating the feasibility of producing titanium components using additive layer manufacturing.
The Metalysis process is radically cheaper and environmentally benign compared with existing titanium production methods, such as the energy-intensive and toxic Kroll process.
Currently, the manufacture of titanium powder involves taking the metal sponge produced by the Kroll process, which is then processed into ingot billets, melted into bar form and finally atomised into powder a costly and labour-intensive four-step process.
Metalysis takes rutile and transforms it directly into powdered titanium using electrolysis, which is cost-effective and thus essential to the supply chain; the low-cost titanium powder can be used in a variety of new applications whereas previously the metal has been excessively expensive for use in mass production of lower value items.
3D printing brings further cost benefits by reducing waste because the current means of production is subtractive, as components are shaped out of metal billets, which wastes a huge amount of material. Metalysis' low-cost titanium powder enables additive manufacturing with its metal powder, thereby reducing the quantity of material required.
"Professor Iain Todd, Director of the Mercury Centre explained: "There are significant challenges to overcome in taking emerging technologies like metallic 3D printing from the lab to production, not least of which is material cost. The step-change in terms of process economics that this material breakthrough provides takes us ever closer to the time when 3D Printing of metals such as titanium is considered the norm rather than exceptional."
In a further development, the titanium powder used to manufacture the automotive parts is also a world-first, as Metalysis has created titanium from rutile sand, a naturally occurring titanium ore present in beach sands, in one single step.
The use of this inexpensive and plentiful feedstock for titanium manufacture will dramatically reduce the cost of titanium production, allowing its increased use.
University of Sheffield Vice-Chancellor, Professor Sir Keith Burnett, says, "We are delighted that this innovative work is being undertaken in the University of Sheffield's world-leading Faculty of Engineering.
"Most people associate 3D printing with plastic parts, but, with Metalysis' titanium powder, we have for the first time demonstrated its potential in the manufacturing of metal parts. This is potentially a significant breakthrough for the many sectors which can benefit from its low-cost production. We look forward to continuing working with Metalysis as they develop this ground-breaking technology."
In addition to titanium, Metalysis is developing tantalum powder and will use its technology to produce a wide range of specialist metals (including rare earths).
Furthermore, innovative alloys can be produced using Metalysis' technology because the process is conducted in the solid state, hence metals with significantly different densities or melting points can be alloyed. Metal powders created by the Metalysis process can be engineered to get particle size and distribution correct for a range of PM applications.
Dion Vaughan, CEO of Metalysis adds, ''Metalysis' rutile-derived titanium powder is produced at lower cost and is suitable for 3D printing so that manufacturing metal components becomes more economical.
"The Metalysis process could reduce the price of titanium by as much as 75 per cent, making titanium almost as cheap as specialty steels. We believe that titanium made by the Metalysis process could replace the current use of aluminium and steel in many products. This world-first for a titanium 3D printed component brings us a step closer to making this a reality.''
Am I reading right?..They have developed a system that takes beach sand, extract and produces titanium power then prints a titanium part?..that would be a dramatic game changer
Titanium powder doesn’t cost more than a few cents a pound, right? /s
I’d like to have some notion of the integrity of these printed parts before starting out on a trip in the wilderness. Maybe fine, but a little longevity experience might boost my confidence.
sounds like money well spent 8^)
Political power grows out of the nozzle of a 3-D Printer.
The powder is what makes paint white and from which the “M” on the M&M is made.
http://www.sbir.gov/sbirsearch/detail/224383
http://www.hindawi.com/isrn/metallurgy/2013/808413/
A unique electrolytic process of utilizing a composite Ti02electrode has been demonstrated to produce high purity titanium, as well as co-reduce other oxide compounds to their elemental form, thus electrolytically producing titanium alloys directly. The electrolytically produced titanium alloy powder can bemelt-free consolidated to billets for forming into titanium products at only a few dollars per pound. This program will demonstrate producing titanium alloy powder by unique electrolysis from Ti02-Mx0y composite electrodes. The titanium alloy powder willbe melt-free transformed to Grade 5 Ti-6A1-4V for well under $9.00/lb. finished part. Electrolytically producing high purity titanium alloy powder directly from Ti02/rutile at only a few dollars per pound constitutes a breakthrough, which has the potentialto expand the market for titanium by several orders of magnitude. Expanded markets include armor, automotive, aerospace, chemical process/corrosion resistance, etc.
/johnny
—I would love to have some of my kitchen gear
—made out of titanium.
With feedlot costs of titanium powder
at well under $9.00/lb
You very well may get your wish.
Nice, but you still need a $700,000 SLS machine
/johnny
This technology is huge.
Titanium dioxide is common and cheap.
/johnny
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.