Posted on 03/13/2002 2:47:20 PM PST by Brett66
Americans love rockets, and their interest focuses on the two ends: the front end where the astronauts sit and the tail end where the rocket engines are bolted. For decades, NASA has kept the focus on the front end through an unrelenting public relations campaign touting the astronauts' importance. While this is understandable, it has unfortunately resulted in a skewed program where the Space Shuttle and the International Space Stationboth based on old technologyget most of NASA's budget. It's time to seriously work on the tail end again and build advanced propulsion systems. If we don't, space endeavors will be stuck forever in low-Earth orbit, doing no better than struggling to bolt together the space station. The station is supposed to provide information needed before sending humans on long space voyages, but we already know that living in space is essentially bad for people. It is debilitating to bones and muscles, and radiation from the solar wind and cosmic rays can cause cancer. To go to Mars or back to the moon with slow, low-powered chemical rocket systems is asking for trouble. The best a chemical rocket can do is get up to speed (burning up all its propellant in the process) and then drift to its destination, like a car coasting down the highway with its engine off. What's needed are space drives that will provide a controlled velocity. Spaceflight should evolve in much the same way as the exploration of Antarctica. The first expeditions to the South Pole in the late 19th and early 20th centuries were essentially sprints and publicity stunts, carried out primarily for national prestige and personal glory, though often wrapped in the dubious veneer of science. These sprints were accomplished with the technology of the daysteamships to the ice shelf followed by the use of dogs and manpower to make the tortuous journey. Many men died and many more suffered from frostbite, hunger and exhaustion. After Norway's Roald Amundsen and Britain's Robert Scott both reached the Pole in 1911 (with Scott's party all perishing on the way back), interest waned in duplicating their feats; it was far too expensive in both money and blood to do something that had already been done. Four decades went by before the next explorers arrived at the pole. They were Americans, and they simply flew there in an airplane. It will be the space equivalent of this airplane that will carry people back to the moon and to Mars and beyond. But what kind of engine will power it? I believe it must be a nuclear fission rocketif we're to see it in our lifetimes. A fission rocket is a simple and safe system that uses a nuclear reactor to heat up a liquid such as hydrogen to create thrust. Unfortunately, "nuclear" and "fission" have been dirty words in this country for the last three decades. Despite the fact that nuclear propulsion is the best and safest way to fly major missions beyond Earth orbit, NASA stopped its development back in 1972 to put nearly every penny it had into the development of the shuttle. That was a terrible decision. At that point we had successfully tested nuclear rockets in the open air in Nevada, engines that could be operated with high thrusts for long durationsthe key to entering the solar system. It's time to resurrect the nuclear rocket and confront the critics of nuclear energy, one of the cleanest forms of energy known. Hundreds of nuclear reactors are tooling around in the world's oceans right now, propelling submarines and aircraft carriers. Newer designs, including SAFEthe Safe, Affordable Fission Engineare now being developed at NASA's Marshall Space Flight Center in Huntsville, AL. But why send humans beyond low-Earth orbit at all? One word: energy. The low energy costs Americans currently enjoy are due to the abundant supply of fossil fuels. When those eventually go awayand they willour advanced society may well collapse, unless we take the steps to prepare alternative energy sources. Wind, geothermal, tidal and solar energy resources can be added to the mix, but they will never supplant fossil fuel energy. For that we need something big. Only a combination of nuclear and space-based energy resources can ever take the place of fossil fuels. The solar system is filled with energy in a variety of forms, including solar energy, which could be microwaved back to Earth, and the isotope known as helium-3, which happens to cover the moon. Helium-3 may be the key to fusion energy; many energy researchers believe that fusing helium-3 with deuterium is the cleanest and cheapest approach to commercial fusion power. In my book Back to the Moon, I forecast a day when we'd desperately need that isotope but would lack the means to get it quickly without tremendous risks. I hope my forecast is proved wrong. But right now, it would be nearly impossible to organize new human missions to the moon on a short time-scale. NASA should devise a 15-year program to produce a working advanced space propulsion engine. Our elected representatives and the leaders of NASA should move in concert immediately to put this engine in the agency's budget, with a fixed schedule to build it. It should take a far higher priority than the space station. If we can just get our first advanced rocket booming around space, there will be no holding Americans back from the next frontiers.
Homer Hickam, former NASA aerospace engineer and astronaut training manager, is the author of Back to the Moon, The Coalwood Way, Sky of Stone, We Are Not Afraid, and Rocket Boys, which was made into the film October Sky in 1999.
I have been touting that horn for a long time.
Private enterprise in space is the best way to get things done.
NASA can go suck vacuum. I am tired of hearing about the space shuttle. The silly thing is a 50s tech orbital dump truck.
Let's get out of this fripping gravity well and go places.
The manned shuttle from low earth orbit LEO to low moon orbit LMO should be nuclear to keep transit time to a minimum. The unmanned shuttle from LEO to LMO can be nuclear-plasma.
The earth to LEO RLV will have to be chemical, LOX-LH because of environmental and raw thrust.
The RLV shuttle from LMO to moon and from moon to LMO can be any kind of chemical or nuclear.
1. We race back to the moon to head off China's attempts at dominating it.
2. Private corporations set up tourist/mining operations there.
Rather than allow scientists to explore the concept, political correctness killed it outright, perhaps the first victory the PC crowd ever had.
This guy's heart is in the right place, but I happen to believe he is 180 degrees wrong. First, the absolute last entity that should be involved in space travel is NASA. They will simply turn the project into a multi-billion dollar exercise in boondoggle, gold plating, and feather bedding.
After all, they were given exactly this mission 30 years ago, and what we got for it was the shuttle - low earth orbit at ten times the cost of a big dumb booster.
In fact, I don't believe we need research on advanced propulsion at all. There are two problems: ground to orbit, and orbit to everywhere else; and we have solutions to both. For deep-space propulsion we need continuous low-g thrust, and an ion rocket is the cheap and obvious answer. For ground to orbit, we need brute force, and again the answer is obvious: send the humans up and down on the Delta Clipper, and send everything else one-way up on Orion.
Who needs research? It's only rocket science.
Right now it's probably going to cost more than $10 million to win it.
Let's really make it worth their while
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.