Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Marine Organisms Threatened by Increasingly Acidic Ocean
Woods Hole Oceanographic Institution ^ | September 29, 2005 | Shelly Dawicki

Posted on 10/20/2005 11:55:23 AM PDT by cogitator

Marine Organisms Threatened By Increasingly Acidic Ocean
Corals and Plankton May Have Difficulty Making Shells

Every day, the average person on the planet burns enough fossil fuel to emit 24 pounds of carbon dioxide to the atmosphere, out of which about nine pounds is then taken up by the ocean. As this CO2 combines with seawater, it forms an acid in a process known as ocean acidification.

A new study by an international team of oceanographers published in the September 29, 2005 issue of Nature reports that ocean acidification could result in corrosive chemical conditions much sooner than previously thought. Within 50 to 100 years, there could be severe consequences for marine calcifying organisms, which build their external skeletal material out of calcium carbonate, the basic building block of limestone. Most threatened are cold-water calcifying organisms, including sea urchins, cold-water corals, coralline algae, and plankton known as pteropods—winged snails that swim through surface waters. These organisms provide essential food and habitat to others, so their demise could affect entire ocean ecosystems.

In the Nature study, a group of 27 marine chemists and biologists from Europe, Japan, Australia and the United States combined recently compiled global ocean carbon data with computer models to study potential future changes in the ocean CO2 system. The addition of carbon dioxide to the ocean lowers the pH of seawater, although seawater remains slightly basic with a pH greater than 7. The models project that the ocean's coldest surface waters, such as in the Weddell Sea of Antarctica, will become corrosive to pteropods much sooner than thought. Shells of these marine organisms may simply dissolve as soon as atmospheric CO2 reaches the levels that are expected to occur in about 50 years under the IS92a business-as-usual CO2 emissions scenario.

"We have recognized for several decades that the build-up of carbon dioxide in the atmosphere from fossil-fuel combustion will lead to ocean acidification," said Scott Doney, a senior scientist in the Marine Chemistry and Geochemistry Department at Woods Hole Oceanographic Institution and one of the study authors. "Previous studies have noted that this change in ocean chemistry will hurt warm water species such as corals that build shells out of calcium carbonate but on relatively long time-scales of hundreds of years. We bring a new focus on the impacts to cold water ecosystems, which appear to be even more sensitive to ocean acidification and on shorter time-scales of the next few decades."

Doney says the increased sensitivity is driven by two factors: organisms build shells out of a more soluble form of calcium carbonate called aragonite, and the baseline (pre-industrial) water composition at high latitudes is already less conducive to building shells. "The key ecological role of many of these organisms, which include planktonic mollusks called pteropods and cold-water corals, are just starting to be understood. And in large parts of the Southern Ocean, North Atlantic and North Pacific, they may disappear before the end of this century."

As atmospheric CO2 continues to rise, the projection is that by the end of this century the entire Southern Ocean and part of the North Pacific would become so corrosive that these organisms may not be able to grow their shells. That has not happened for millions of years, and the authors say the current rate of ocean acidification is unprecedented.

“Basic chemistry tells us that within decades there may be serious trouble brewing in the polar oceans,” said James Orr, lead author and ocean modeler from the French Laboratoire des Sciences du Climat et de l'Environnement. “Unlike climate predictions, the uncertainties here are small.”

As a complement to model projections, one of the study coauthors, Victoria Fabry from the Department of Biological Sciences at California State University San Marcos, set up two-day shipboard experiments and demonstrated how shells of live pteropods begin to dissolve when the corrosive conditions that are projected to occur by 2100 are met. “Those results,” Fabry says, “suggest that for subpolar and polar pteropods to survive, they will need either to adapt to the expected changes in seawater chemistry or move to warmer, lower-latitude surface waters,”

If populations of polar pteropods decline significantly, the researchers say that decline could provoke a chain reaction of events through complex ocean ecosystems. Pteropods are eaten by organisms ranging in size from zooplankton to whales and provide part of the diet of many fish, including commercially important species such as North Pacific salmon.

The material that makes up pteropod shells is aragonite, a common mineral form of calcium carbonate which is also secreted by other marine organisms to form external skeletal material. Such organisms include varieties of stony corals that grow throughout the cold, dark recesses of the ocean. Unlike their better-known tropical cousins which grow in warm surface waters, these cold-water corals grow very slowly and can live to be hundreds of years old. Previous studies have already shown that ocean acidification will make tropical corals less able to build skeletal material, even before waters become corrosive. However, the cold-water corals will be the first to be bathed in waters that are actually corrosive to aragonite.

[My note: Other corals are made a variety of calcite that contains significant magnesium, called Mg-calcite, that is actually more soluble than aragonite in seawater.]

In recent years, human occupied and remotely controlled submersibles have begun to provide scientists with photographs of the beautiful skeletal structures of cold-water corals. These calcium carbonate skeletons are essential not only for their survival, but also for providing the habitats for diverse ecosystems, including deep-sea fish, eels, crabs, and sea urchins.

Cold-water corals are already threatened by open-ocean trawling for bottom fish. Ocean acidification will add further pressure on cold-water corals, especially those made of aragonite.These corals are most abundant in the North Atlantic, where they form massive deep reefs. Unfortunately, North Atlantic polar and subpolar waters that now offer hospitable refuge down to depths of 3 kilometers, or about two miles, will become mostly corrosive by the end of the century due to the invasion of fossil fuel CO2.

Other marine organisms among the first to show signs of corrosion from ocean acidification are those that construct external skeletons out of another variety of calcium carbonate rich in magnesium. These organisms include sea urchins and coralline algae, which are common on the Arctic and Antarctic sea floor.

This new study has demonstrated that cold polar surface waters will start to become corrosive to these calcifying organisms once the atmospheric CO2 level reaches about 600 parts per million. Although that number is 60% more than the current level, Doney and colleagues say it could be attained by the middle of this century and note there is now urgency for new research to respond to a much tougher question: To what extent will ocean acidification alter marine ecosystems and biodiversity?


TOPICS: Culture/Society; Extended News; Foreign Affairs; Government; News/Current Events
KEYWORDS: acidityhoax; caco3; calciumcarbonate; climate; co2; coral; emissions; globalwarminghoax; greennewdeal; marinebiology; oceans; panicporn; plankton; reef
Navigation: use the links below to view more comments.
first previous 1-2021-4041-60 last
To: lepton
Agreed, see post 19. However, carbonic acid is not stable in an open system, and especially with the introduction of heat to the system. Also, rainfall will decompose any carbonic acid on the surface of a body of water, right back into CO2 and H2O.

My original post was poorly phrased; the question is why acidity increases in an OPEN system, not a fish tank or a glass of water.

41 posted on 10/20/2005 2:12:21 PM PDT by SAJ
[ Post Reply | Private Reply | To 30 | View Replies]

To: lepton
Agreed, except that at any point in time there are X available ions in a given quantity of water. Introduce some CO2, make some carbonic acid, but sooner or later the process stops dead, for there are no more free ions with which to combine.

I just phrased the question very poorly, sorry.

And, there are other factors to consider, too. If a body of water is rich in dissolved minerals, say calcium, introducing CO2 is going to form relatively more calcium carbonate, and a good deal less carbonic acid. pH might actually rise in this case, depending on mineral concentration.

42 posted on 10/20/2005 2:18:22 PM PDT by SAJ
[ Post Reply | Private Reply | To 33 | View Replies]

To: SAJ
This doesn't pass the smell test of Chem 101. To form an acid, you must have hydrogen ions. CO2 has none, and so is adding no hydrogen in any form to seawater. Are we supposed to believe: H2O.NaCl + CO2 ==> something acidic?

CO2 hydrates to Carbonic Acid, H2CO3. This is the key to the stalactite-forming process in caves. CO2 dissolved in water percolates through limestone, CaCO3, dissolving it. When CO2 is lost upon evaporation or diffusion into the air because of k, the CaCO3 precipitates out.

The role of the carbonate ion is also linked to the formation rate of kidney stones. The body is very effective at PCO2 regulation, as a person can "blow off" CO2 when needed.Metabolic defects such as occur in Renal Tubular Acidosis were at one time (1970's) treated with bicarbonates. Now, citrates are used because RTA is one result of a genetic citrate metabolic defect- And the citrate is a very effective chelating agent for Group IIA metals.

Still, I HATE agreeing with enviro stuff!! :-)

43 posted on 10/20/2005 2:19:33 PM PDT by Gorzaloon
[ Post Reply | Private Reply | To 14 | View Replies]

To: Moonman62
Where can I find some real numbers? I want to know more than just the trend.

Probably in the September 29 issue of Nature. But wait...

Google finds:

http://www.ipsl.jussieu.fr/~jomce/acidification/paper/Orr_OnlineNature04095.pdf

This is the referenced Nature paper, and now you and I don't need to go to the library to read it!

44 posted on 10/20/2005 2:35:44 PM PDT by cogitator
[ Post Reply | Private Reply | To 40 | View Replies]

To: cogitator
cogitator -- review the carbon cycle and photosynthesis.

CO2 + H2O ------> sugar
+ light
+ heat

Without CO2, there is no growth. CO2 IS an essential "vital" nutrient. ;-)
45 posted on 10/20/2005 2:46:14 PM PDT by Blueflag (Res ipsa loquitor)
[ Post Reply | Private Reply | To 10 | View Replies]

To: lilylangtree
Coming from the movie "Day After Tomorrow", eh.

Exactly. This article is a well crafted, steaming double coiler.


46 posted on 10/20/2005 2:54:56 PM PDT by Bloody Sam Roberts (If you decide to kick the tiger in the ass...you'd better be prepared to deal with the teeth.)
[ Post Reply | Private Reply | To 6 | View Replies]

To: SAJ
Simply put, the hydrogen ions come from water, H2O. Carbonic acid is the result as shown by a prior post. When the vapor pressure ( of dissolved CO2 ) changes, more CO2 enters or leaves the water, and the amount of carbonic acid correspondingly changes.

This is NOT an open system, it is a closed loop system. CO2 enters and leaves the oceans all the time. The oceans are not just a carbon sink.
47 posted on 10/20/2005 2:57:53 PM PDT by Blueflag (Res ipsa loquitor)
[ Post Reply | Private Reply | To 17 | View Replies]

To: Wonder Warthog
As the other poster mentioned, it varies by local and depth and composition as to what THE specific limiting factor is. My point is that in the core reaction of photosynthesis, -- combining CO2 and H2O to make sugar, CO2 can be the limiting factor. This is true in hot house tomato farming and corn fields. I don't have the citation, but this was demonstrated IN DEPTH by the University of Southwestern Louisiana in the 1908s.
48 posted on 10/20/2005 3:01:30 PM PDT by Blueflag (Res ipsa loquitor)
[ Post Reply | Private Reply | To 23 | View Replies]

To: Gorzaloon

Excellent explanation, and thanks!


49 posted on 10/20/2005 3:41:04 PM PDT by SAJ
[ Post Reply | Private Reply | To 43 | View Replies]

To: Blueflag
Ok, thanks. I'll take your word for it, certainly, but I've some trouble imagining the oceans as merely an overlarge fish tank, in terms of characterising the system as open or closed.

;^)

50 posted on 10/20/2005 3:43:08 PM PDT by SAJ
[ Post Reply | Private Reply | To 47 | View Replies]

To: SAJ

Fair enough. When I speak of a closed system, I mean the carbon cycle. Carbon's trip into the oceans is not a one way trip, like dumping mining slag into a pit would be.


51 posted on 10/20/2005 3:46:08 PM PDT by Blueflag (Res ipsa loquitor)
[ Post Reply | Private Reply | To 50 | View Replies]

To: Blueflag
cogitator -- review the carbon cycle and photosynthesis.

CO2 + H2O ------> sugar

+ light

+ heat

Without CO2, there is no growth. CO2 IS an essential "vital" nutrient. ;-)

True as far as it goes, but in the context of biology, that is only half the cycle.

The other half is:

Sugars*-------Metabolism---> CO2+HOH+Energy, and around it goes, plants to animals to plants..

*(Including oligomers like starches)

When someone runs a propane CO2 generator in a tomato greenhouse, they are cycling the plant-produced O2 through another redox reaction to produce CO2 back to the plants, and the plants love it.

52 posted on 10/20/2005 3:58:38 PM PDT by Gorzaloon
[ Post Reply | Private Reply | To 45 | View Replies]

To: cogitator

I doubt we can impact on the oceans in such a way. They are much too big. We can over fish the ocean. We can over exploit fisheries. But the oceans are too big for mankind to turn acid. But perhaps some scientists can get research grates and employment from this non-issue


53 posted on 10/20/2005 4:03:15 PM PDT by dennisw (You shouldn't let other people get your kicks for you - Bob Dylan)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Gorzaloon

Absolutely. U R correct. That's why it's called the carbon cycle, not the carbon drain.


54 posted on 10/21/2005 4:28:13 AM PDT by Blueflag (Res ipsa loquitor)
[ Post Reply | Private Reply | To 52 | View Replies]

To: SAJ
Marine Organisms Threatened by Increasingly Acidic Ocean

Maybe we should start adding DRANO to the oceans???

55 posted on 10/21/2005 4:42:59 AM PDT by Sir Francis Dashwood (LET'S ROLL!)
[ Post Reply | Private Reply | To 14 | View Replies]

To: ClearCase_guy

bump


56 posted on 10/21/2005 4:45:18 AM PDT by GOPJ (The enemy is never tired, never sated, never content with yesterday's brutality. -- President Bush)
[ Post Reply | Private Reply | To 4 | View Replies]

To: Blueflag
Without CO2, there is no growth. CO2 IS an essential "vital" nutrient. ;-)

It's essential, but not limiting.

57 posted on 10/21/2005 6:55:45 AM PDT by cogitator
[ Post Reply | Private Reply | To 45 | View Replies]

To: dennisw
I doubt we can impact on the oceans in such a way.

It's fine to be skeptical, but in this case, the science is very strong, so your doubts are trumped by data. I invite you to read the paper linked in post 44.

58 posted on 10/21/2005 6:57:49 AM PDT by cogitator
[ Post Reply | Private Reply | To 53 | View Replies]

To: Sir Francis Dashwood
Maybe we should start adding DRANO to the oceans???

Powdered limestone. Might take a bit, though. (This works in acidified lakes, by the way.)

59 posted on 10/21/2005 6:58:39 AM PDT by cogitator
[ Post Reply | Private Reply | To 55 | View Replies]

To: cogitator
If C02 is the enemy, I'm sure this group of scientists will be at the forefront of a movement to replace fossil fuels with clean nuclear energy -- NOT!

Reading between the lines it's clear the only solution they have in mind is a drastic reduction in the number of human beings. Let them volunteer to be the first to go.

60 posted on 10/21/2005 7:27:38 AM PDT by Bernard Marx (Don't make the mistake of interpreting my Civility as Servility)
[ Post Reply | Private Reply | To 1 | View Replies]


Navigation: use the links below to view more comments.
first previous 1-2021-4041-60 last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson