The year 1902 saw the first production of synthetic ruby using the Verneuil flame-fusion process. Later, sapphire, spinel, rutile, and strontium titanate were grown with this technique. In this process, a single crystal, called a boule, forms in the flame of a simple, downward-impinging oxygen-hydrogen blowtorch. Pure oxides of aluminum (in the cases of ruby, sapphire, and spinel) or titanium (rutile and strontium titanate) are poured into the top of a small furnace and melted. Other oxides are added as needed for process control and to obtain the specific color desired. The melted material solidifies as a boule on a rotating fire-clay peg as the peg is slowly withdrawn. A boule has a very characteristic shape, with a rounded end, a long cylindrical body, and a tapering end. It is usually about 13 to 25 millimeters in diameter, 50 to 100 millimeters long, and weighs 75 to 250 carats.
Another melt technique is the Bridgman-Stockbarge solidification method, named for an American, P.W. Bridgman, and a German, D.C. Stockbarge, who, aided by three Russians, J. Obreimov, G. Tammann, and L. Shubnikov, discovered and perfected the process between 1924 and 1936. Currently, the method is used primarily for growing nongem halide, sulfide, and various metallic oxide crystals, one of the metallic oxides being aluminum oxide or sapphire
lots of stuff on this one
http://optics.org/articles/news/10/3/10/1
how about transparent concrete?
http://www.litracon.com/