Free Republic
Browse · Search
General/Chat
Topics · Post Article

To: Kevmo

Like........who didn’t know that?


8 posted on 12/21/2013 5:31:27 PM PST by ALASKA (Disgusted......)
[ Post Reply | Private Reply | To 1 | View Replies ]


To: ALASKA
Oh... ok. Here's another good comment, and a chance for skeptics to comment on the science behind LENR. --------------www.mail-archive.com/vortex-l@eskimo.com/msg88126.html---------- Re: [Vo]:Electron assisted neutron exchange in solid state H Veeder Fri, 20 Dec 2013 08:40:53 -0800 On Fri, Dec 20, 2013 at 12:54 AM, wrote: > > One of these is - > "Nuclear processes in solids: basic 2nd-order processes" > http://arxiv.org/abs/1303.1078 > > ABSTRACT > Nuclear processes in solid environment are investigated. It is shown that > if a slow, quasi-free heavy particle of positive charge interacts with a > "free" electron of a metallic host, it can obtain such a great magnitude > of momentum in its intermediate state that the probability of its nuclear > reaction with an other positively charged, slow, heavy particle can > significantly increase. It is also shown that if a quasi-free heavy > particle of positive charge of intermediately low energy interacts with a > heavy particle of positive charge of the solid host, it can obtain much > greater momentum relative to the former case in the intermediate state and > consequently, the probability of a nuclear reaction with a positively > charged, heavy particle can even more increase. This mechanism opens the > door to a great variety of nuclear processes which up till know are > thought to have negligible rate at low energies. Low energy nuclear > reactions allowed by the Coulomb assistance of heavy charged particles is > partly overviewed. Nuclear pd and dd reactions are investigated > numerically. It was found that the leading channel in all the discussed > charged particle assisted dd reactions is the electron assisted d+d→ 4He > process. > The summary describes important aspects of the paper which are not mentioned in the abstract: <> Note: reference 13 is Ed Storms' 2010 paper in Naturwissenschaften. Harry
10 posted on 12/21/2013 5:36:54 PM PST by Kevmo ("A person's a person, no matter how small" ~Horton Hears a Who)
[ Post Reply | Private Reply | To 8 | View Replies ]

To: ALASKA
FR's HTML autodetect really goes kaflooey sometimes.


Oh... ok. Here's another good comment, and a chance for skeptics to comment on the science behind LENR.

Re: [Vo]:Electron assisted neutron exchange in solid state

H Veeder Fri, 20 Dec 2013 08:40:53 -0800

On Fri, Dec 20, 2013 at 12:54 AM, wrote:


pagnucco Thu, 19 Dec 2013 21:55:05 -0800
In case they were not cited in Vortex earlier, the two authors have a number of papers on Arxiv that may be relevant to LENR - at URL:
(note HTML) arxivdot org/find/nucl-th/1/au:+Keszthelyi_T/0/1/0/all/0/1

One of these is -
"Nuclear processes in solids: basic 2nd-order processes" (note HTML ) arxivdot org/abs/1303.1078

ABSTRACT
Nuclear processes in solid environment are investigated. It is shown that if a slow, quasi-free heavy particle of positive charge interacts with a "free" electron of a metallic host, it can obtain such a great magnitude of momentum in its intermediate state that the probability of its nuclear reaction with an other positively charged, slow, heavy particle can significantly increase. It is also shown that if a quasi-free heavy particle of positive charge of intermediately low energy interacts with a heavy particle of positive charge of the solid host, it can obtain much greater momentum relative to the former case in the intermediate state and consequently, the probability of a nuclear reaction with a positively charged, heavy particle can even more increase. This mechanism opens the door to a great variety of nuclear processes which up till know are thought to have negligible rate at low energies. Low energy nuclear reactions allowed by the Coulomb assistance of heavy charged particles is partly overviewed. Nuclear pd and dd reactions are investigated numerically. It was found that the leading channel in all the discussed charged particle assisted dd reactions is the electron assisted d+d¨ 4He process.

The summary describes important aspects of the paper which are not mentioned in the abstract:

VI. SUMMARY
It is found that, contrary to the commonly accepted opinion, in a solid metal surrounding nuclear reactions can happen between heavy, charged particles of like (positive) charge of low initial energy. It is recognized, that one of the participant particles of a nuclear reaction of low initial energy may pick up great momentum in a Coulomb scattering process on a free, third particle of the surroundings. The virtually acquired great momentum, that is determined by the energy of the reaction, can help to overcome the hindering Coulomb barrier and can highly increase the rate of the nuclear reaction even in cases when the rate would be otherwise negligible. It is found that the electron assisted d + d → 4He process has the leading rate. In the reactions discussed energetic charged particles are created, that can become (directly or after Coulomb collisions) the source of heavy charged particles of intermediately low (of about a few keV ) energy. These heavy particles can assist nuclear reactions too.

It is worth mentioning that the shielding of the Coulomb potential has no effect on the mechanisms discussed. Our thoughts were motivated by our former theoretical findings [9] according to which the leading channel of the p + d → 3He reaction in solid environment is the so called solid state internal conversion process, an adapted version of ordinary internal conversion process [10]. In the process formerly discussed [9] if the reaction takes place in solid material, in which instead of the emission of a photon, the nuclear energy is taken away by an electron of the environment (the metal), the Coulomb interaction induces a p + d → 3He nuclear transition. The processes discussed here can be considered as an alternative version of the solid state internal conversion process since it is thought that one party of the initial particles of the nuclear process takes part in Coulomb interaction with a charged particle of the solid material (e.g. of a metal).

There may be many fields of physics where the traces of the proposed mechanism may have been previously appeared. It is not the aim of this work to give a systematic overview these fields. We only mention here two of them that are thought to be partly related or explained by the processes proposed. The first is the so called anomalous screening effect observed in low energy accelerator physics investigating astrophysical factors of nuclear reactions of low atomic numbers [11].

The other one is the family of low energy nuclear fusion processes. The physical background, discussed in the Introduction and in the first part of Section V., was questioned by the two decade old announcement [12] on excess heat generation due to nuclear fusion reaction of deuterons at deuterized Pd cathodes during electrolysis at near room temperature. The paper [12] initiated continuous experimental work whose results were summarized recently [13]. The mechanisms discussed here can explain some of the main problems raised in [13]. (a) The mechanisms proposed here make low energy fusion reactions and nuclear transmutations possible. (b) The processes discussed explain the lack of the normally expected reaction products.

The authors are indebted to K. H¨artlein for his technical assistance.

Note: reference 13 is Ed Storms' 2010 paper in Naturwissenschaften.

Harry
11 posted on 12/21/2013 5:46:09 PM PST by Kevmo ("A person's a person, no matter how small" ~Horton Hears a Who)
[ Post Reply | Private Reply | To 8 | View Replies ]

Free Republic
Browse · Search
General/Chat
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson