Free Republic
Browse · Search
General/Chat
Topics · Post Article

To: CottShop

[[If naturalistic molecules-to-human-life evolution were true, multibillions of links are required to bridge modern humans with the chemicals that once existed in the hypothetical “primitive soup”. This putative soup, assumed by many scientists to have given birth to life over 3.5 billion years ago, was located in the ocean or mud puddles. Others argue that the origin of life could not have been in the sea but rather must have occurred in clay on dry land. Still others conclude that abiogenesis was more likely to have occurred in hot vents. It is widely recognized that major scientific problems exist with all naturalistic origin of life scenarios. This is made clear in the conclusions of many leading origin-of-life researchers. A major aspect of the abiogenesis question is “What is the minimum number of parts necessary for an autotrophic free living organism to live, and could these parts assemble by naturalistic means?” Research shows that at the lowest level this number is in the multimillions, producing an irreducible level of complexity that cannot be bridged by any known natural means. ]]

http://www.trueorigin.org/abio.asp

“If naturalistic molecules-to-human-life evolution were true, multibillions of links are required to bridge modern humans with the chemicals that once existed in the hypothetical “primitive soup”. This putative soup, assumed by many scientists to have given birth to life over 3.5 billion years ago, was located in the ocean or mud puddles. Others argue that the origin of life could not have been in the sea but rather must have occurred in clay on dry land. Still others conclude that abiogenesis was more likely to have occurred in hot vents. It is widely recognized that major scientific problems exist with all naturalistic origin of life scenarios. This is made clear in the conclusions of many leading origin-of-life researchers. A major aspect of the abiogenesis question is “What is the minimum number of parts necessary for an autotrophic free living organism to live, and could these parts assemble by naturalistic means?” Research shows that at the lowest level this number is in the multimillions, producing an irreducible level of complexity that cannot be bridged by any known natural means.


Introduction
biogenesis is the theory that life can arise spontaneously from non-life molecules under proper conditions. Evidence for a large number of transitional forms to bridge the stages of this process is critical to prove the abiogenesis theory, especially during the early stages of the process. The view of how life originally developed from non-life to an organism capable of independent life and reproduction presented by the mass media is very similar to the following widely publicized account:

Four and a half billion years ago the young planet Earth... was almost completely engulfed by the shallow primordial seas. Powerful winds gathered random molecules from the atmosphere. Some were deposited in the seas. Tides and currents swept the molecules together. And somewhere in this ancient ocean the miracle of life began... The first organized form of primitive life was a tiny protozoan [a one-celled animal]. Millions of protozoa populated the ancient seas. These early organisms were completely self-sufficient in their sea-water world. They moved about their aquatic environment feeding on bacteria and other organisms... From these one-celled organisms evolved all life on earth (from the Emmy award winning PBS NOVA film The Miracle of Life quoted in Hanegraaff, 1998, p. 70, emphasis in original).
Science textbook authors Wynn and Wiggins describe the abiogenesis process currently accepted by Darwinists:

Aristotle believed that decaying material could be transformed by the “spontaneous action of Nature” into living animals. His hypothesis was ultimately rejected, but... Aristotle’s hypothesis has been replaced by another spontaneous generation hypothesis, one that requires billions of years to go from the molecules of the universe to cells, and then, via random mutation/natural selection, from cells to the variety of organisms living today. This version, which postulates chance happenings eventually leading to the phenomenon of life, is biology’s Theory of Evolution (1997, p. 105).
The question on which this paper focuses is “How much evidence exists for this view of life’s origin?” When Darwinists discuss “missing links” they often imply that relatively few links are missing in what is a rather complete chain which connects the putative chemical precursors of life that is theorized to have existed an estimated 3.5 billion years ago to all life forms existing today. Standen noted a half century ago that the term “missing link” is misleading because it suggests that only one link is missing whereas it is more accurate to state that so many links are missing that it is not evident whether there was ever a chain (Standen, 1950, p. 106). This assertion now has been well documented by many creationists and others (see Bergman, 1998; Gish, 1995; Lubenow, 1994, 1992; Rodabaugh, 1976; and Moore, 1976).

Scientists not only have been unable to find a single undisputed link that clearly connects two of the hundreds of major family groups, but they have not even been able to produce a plausible starting point for their hypothetical evolutionary chain (Shapiro, 1986). The first links— actually the first hundreds of thousands or more links that are required to produce life—still are missing (Behe, 1996, pp. 154–156)! Horgan concluded that if he were a creationist today he would focus on the origin of life because this

...is by far the weakest strut of the chassis of modern biology. The origin of life is a science writer’s dream. It abounds with exotic scientists and exotic theories, which are never entirely abandoned or accepted, but merely go in and out of fashion (1996, p. 138).
The major links in the molecules-to-man theory that must be bridged include (a) evolution of simple molecules into complex molecules, (b) evolution of complex molecules into simple organic molecules, (c) evolution of simple organic molecules into complex organic molecules, (d) eventual evolution of complex organic molecules into DNA or similar information storage molecules, and (e) eventually evolution into the first cells. This process requires multimillions of links, all which either are missing or controversial. Scientists even lack plausible just-so stories for most of evolution. Furthermore the parts required to provide life clearly have specifications that rule out most substitutions.

In the entire realm of science no class of molecule is currently known which can remotely compete with proteins. It seems increasingly unlikely that the abilities of proteins could be realized to the same degree in any other material form. Proteins are not only unique, but give every impression of being ideally adapted for their role as the universal constructor devices of the cell ... Again, we have an example in which the only feasible candidate for a particular biological role gives every impression of being supremely fit for that role (Denton, 1998, p. 188, emphasis in original).
The logical order in which life developed is hypothesized to include the following basic major stages:

Certain simple molecules underwent spontaneous, random chemical reactions until after about half-a-billion years complex organic molecules were produced.
Molecules that could replicate eventually were formed (the most common guess is nucleic acid molecules), along with enzymes and nutrient molecules that were surrounded by membraned cells.
Cells eventually somehow “learned” how to reproduce by copying a DNA molecule (which contains a complete set of instructions for building a next generation of cells). During the reproduction process, the mutations changed the DNA code and produced cells that differed from the originals.
The variety of cells generated by this process eventually developed the machinery required to do all that was necessary to survive, reproduce, and create the next generation of cells in their likeness. Those cells that were better able to survive became more numerous in the population (adapted from Wynn and Wiggins, 1997, p. 172).
The problem of the early evolution of life and the unfounded optimism of scientists was well put by Dawkins. He concluded that Earth’s chemistry was different on our early, lifeless, planet, and that at this time there existed

...no life, no biology, only physics and chemistry, and the details of the Earth’s chemistry were very different. Most, though not all, of the informed speculation begins in what has been called the primeval soup, a weak broth of simple organic chemicals in the sea. Nobody knows how it happened but, somehow, without violating the laws of physics and chemistry, a molecule arose that just happened to have the property of self-copying—a replicator. This may seem like a big stroke of luck... Freakish or not, this kind of luck does happen... [and] it had to happen only once... What is more, as far as we know, it may have happened on only one planet out of a billion billion planets in the universe. Of course many people think that it actually happened on lots and lots of planets, but we only have evidence that it happened on one planet, after a lapse of half a billion to a billion years. So the sort of lucky event we are looking at could be so wildly improbable that the chances of its happening, somewhere in the universe, could be as low as one in a billion billion billion in any one year. If it did happen on only one planet, anywhere in the universe, that planet has to be our planet—because here we are talking about it (Dawkins, 1996, pp. 282–283, emphasis in original).
The Evidence for the Early Steps of Evolution
The first step in evolution was the development of simple self-copying molecules consisting of carbon dioxide, water and other inorganic compounds. No one has proven that a simple self-copying molecule can self-generate a compound such as DNA. Nor has anyone been able to create one in a laboratory or even on paper. The hypothetical weak “primeval soup” was not like soups experienced by humans but was highly diluted, likely close to pure water. The process is described as life having originated

spontaneously from organic compounds in the oceans of the primitive Earth. The proposal assumes that primitive oceans contained large quantities of simple organic compounds that reacted to form structures of greater and greater complexity, until there arose a structure that we would call living. In other words, the first living organism developed by means of a series of nonbiological steps, none of which would be highly improbably on the basis of what is know today. This theory, [was] first set forth clearly by A.I. Oparin (1938) ... (Newman, 1967, p. 662).
An astounding number of speculations, models, theories and controversies still surround every aspect of the origin of life problem (Lahav 1999). Although some early scientists proposed that “organic life ... is eternal,” most realized it must have come “into existence at a certain period in the past” (Haeckel, 1905, p. 339). It now is acknowledged that the first living organism could not have arisen directly from inorganic matter (water, carbon dioxide, and other inorganic nutrients) even as a result of some extraordinary event. Before the explosive growth of our knowledge of the cell during the last 30 years, it was known that “the simplest bacteria are extremely complex, and the chances of their arising directly from inorganic materials, with no steps in between, are too remote to consider seriously.” (Newman, 1967, p. 662). Most major discoveries about cell biology and molecular biology have been made since then. “

It appears that the field of molecular biology will falsify Darwinism. An estimated 100,000 different proteins are used to construct humans alone. Furthermore, one million species are known, and as many as 10 million may exist. Although many proteins are used in most life forms, as many as 100 million or more protein variations may exist in all plant and animal life. According to Asimov:

Now, almost each of all the thousands of reactions in the body is catalyzed by a specific enzyme ... a different one in each case ... and every enzyme is a protein, a different protein. The human body is not alone in having thousands of different enzymes—so does every other species of creature. Many of the reactions that take place in human cells also happen in the cells of other creatures. Some of the reactions, indeed, are universal, in that they take place in all cells of every type. This means that an enzyme capable of catalyzing a particular reaction may be present in the cells of wolves, octopi, moss, and bacteria, as well as in our own cells. And yet each of these enzymes, capable though it is of catalyzing one particular reaction, is characteristic of its own species. They may all be distinguished from one another. It follows that every species of creature has thousands of enzymes and that all those enzymes may be different. Since there are over a million different species on earth, it may be possible—judging from the enzymes alone—that different proteins exist by the millions! (Asimov, 1962, pp. 27–28).
Even using an unrealistically low estimate of 1,000 steps required to “evolve” the average protein (if this were possible) implies that many trillions of links were needed to evolve the proteins that once existed or that exist today. And not one clear transitional protein that is morphologically and chemically in between the ancient and modern form of the protein has been convincingly demonstrated. The same problem exists with fats, nucleic acids, carbohydrates and the other compounds that are produced by, and necessary for, life.

Scientists have yet to discover a single molecule that has “learned to make copies of itself” (Simpson, 1999, p. 26). Many scientists seem to be oblivious of this fact because

Articles appearing regularly in scientific journals claim to have generated self-replicating peptides or RNA strands, but they fail to provide a natural source for their compounds or an explanation for what fuels them... this top-down approach... [is like] a caveman coming across a modern car and trying to figure out how to make it. “It would be like taking the engine out of the car, starting it up, and trying to see how that engine works” (Simpson, 1999, p.26).
Some bacteria, specifically phototrophs and lithotrophs, contain all the metabolic machinery necessary to construct most of their growth factors (amino acids, vitamins, purines and pyrimidines) from raw materials (usually O2, light, a carbon source, nitrogen, phosphorus, sulfur and a dozen or so trace minerals). They can live in an environment with few needs but first must possess the complex functional metabolic machinery necessary to produce the compounds needed to live from a few types of raw materials. This requires more metabolic machinery in order to manufacture the many needed organic compounds necessary for life. Evolution was much more plausible when life was believed to be a relatively simple material similar to, in Haeckel’s words, the “transparent viscous albumin that surrounds the yolk in the hen’s egg” which evolved into all life today. Haeckel taught the process occurred as follows:

By far the greater part of the plasm that comes under investigation as active living matter in organisms is metaplasm, or secondary plasm, the originally homogeneous substance of which has acquired definite structures by phyletic differentiations in the course of millions of years (1905, p.126).
Abiogenesis is only one area of research which illustrates that the naturalistic origin of life hypothesis has become less and less probable as molecular biology has progressed, and is now at the point that its plausibility appears outside the realm of probability. Numerous origin-of-life researchers, have lamented the fact that molecular biology during the past half-a-century has not been very kind to any naturalistic origin-of-life theory. Perhaps this explains why researchers now are speculating that other events such as panspermia or an undiscovered “life law” are more probable than all existing terrestrial abiogenesis theories, and can better deal with the many seemingly insurmountable problems of abiogenesis.

-—Nope- Warm primordial soup is unfortunately not enough to overcome the impossibilities of biological evolution- Dirty Chemicals can NOT account for the presence of clean chemicals found in biological life, nor for their complex arangements which needed intelligence to construct, assemble, arrange, and cohenrrently maintain- blind purely natural processes were NOT capable of creating happy aCcidents capable of susstaining life I’m afraid


412 posted on 01/11/2011 10:43:19 AM PST by CottShop (Scientific belief does not constitute scientific evidence, nor does it convey scientific knowledge)
[ Post Reply | Private Reply | To 411 | View Replies ]


To: CottShop

I’ve been waiting for my very own Lear Jet to assemble itself out of the various bits of equipment laying around here, and every time the wind blows I get my hopes up.


414 posted on 01/11/2011 10:49:40 AM PST by editor-surveyor (Obamacare is America's kristallnacht !!)
[ Post Reply | Private Reply | To 412 | View Replies ]

Free Republic
Browse · Search
General/Chat
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson