Free Republic
Browse · Search
General/Chat
Topics · Post Article

To: All
Technology: Quantum computers

Vancouver startup D-Wave Systems, however, aims to build a quantum computer within three years. It won't be a fully functional quantum computer of the sort long envisioned; but D-Wave is on track to produce a special-purpose, "noisy" piece of quantum hardware that could solve many of the physical-simulation problems that stump today's computers, says David Meyer, a mathematician working on quantum algorithms at the University of California, San Diego.

The difference between D-Wave's system and other quantum computer designs is the particular properties of quantum mechanics that they exploit. Other systems rely on a property called entanglement, which says that any two particles that have interacted in the past, even if now spatially separated, may still influence each other's states. But that interdependence is easily disrupted by the particles' interactions with their environment. In contrast, D-Wave's design takes advantage of the far more robust property of quantum physics known as quantum tunneling, which allows particles to "magically" hop from one location to another.

Incorporated in April 1999, D-Wave originated as a series of conversations among students and lecturers at the University of British Columbia. Over the years, it has amassed intellectual property and narrowed its focus, while attracting almost $18 million in funding, initially from angel investors and more recently from the Canadian and German governments, and from venture capital firms. The company plans to complete a prototype device by the end of 2006; a version capable of solving commercial problems could be ready by 2008, says president and CEO Geordie Rose.

The aggressiveness of D-Wave's timetable is made possible by the simplicity of its device's design: an analog chip made of low-temperature superconductors. The chip must be cooled to -269 °C with liquid helium, but it doesn't require the delicate state-of-the-art lasers, vacuum pumps, and other exotic machinery that other quantum computers need.

The design is also amenable to the lithography techniques used to make standard computer chips, further simplifying fabrication. D-Wave patterns an array of loops of low-temperature superconductors such as aluminum and niobium onto a chip. When electricity flows through them, the loops act like tiny magnets. Two refrigerator magnets will naturally flip so that they stick together, minimizing the energy between them. The loops in D-Wave's chip behave similarly, "flipping" the direction of current flow from clockwise to counterclockwise to minimize the magnetic flux between them. Depending on the problem it's meant to tackle, the chip is programmed so that current flows through each loop in a particular direction. The loops then spontaneously flip until they reach a stable energy state, which represents the solution to the problem. ...

Quantum Calculation - D-Wave Systems is building a 'quantum' computer to solve intractable real-world problems. The secret: cooling the chip to -269 C with liquid helium, MIT's Technology Review, July 2005

4 posted on 02/06/2007 3:23:46 PM PST by theFIRMbss
[ Post Reply | Private Reply | To 1 | View Replies ]


To: theFIRMbss
The loops then spontaneously flip until they reach a stable energy state, which represents the solution to the problem. ...

Is it just me, or does this sound suspiciously like the Improbability Drive?

Does Zaphod know about this?

8 posted on 02/06/2007 3:32:27 PM PST by wizecrakker (Trying to behave)
[ Post Reply | Private Reply | To 4 | View Replies ]

Free Republic
Browse · Search
General/Chat
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson