"The longer WMAP observes, the more it reveals about how our universe grew from microscopic quantum fluctuations to the vast expanses of stars and galaxies we see today."
---
our universe grew from microscopic quantum fluctuations ..
what the heck are microscopic quantum fluctuations ? hmmmm
http://zebu.uoregon.edu/~js/ast123/lectures/lec17.html
Quantum Fluctuations :
The fact that the Universe exists should not be a surprise in the context of what we know about quantum physics. The uncertainty and unpredictability of the quantum world is manifested in the fact that whatever can happen, does happen (this is often called the principle of totalitarianism, that if a quantum mechanical process is not strictly forbidden, then it must occur).
For example, radioactive decay occurs when two protons and two neutrons (an alpha particle) leap out of an atomic nuclei. Since the positions of the protons and neutrons is governed by the wave function, there is a small, but finite, probability that all four will quantum tunnel outside the nucleus, and therefore escape. The probability of this happening is small, but given enough time (tens of years) it will happen.
The same principles were probably in effect at the time of the Big Bang (although we can not test this hypothesis within our current framework of physics). But as such, the fluctuations in the quantum vacuum effectively guarantee that the Universe would come into existence.