Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Researchers study how metal contamination makes gasoline production inefficient
Phys.Org ^ | 05/01/2015 | Provided by SLAC National Accelerator Laboratory

Posted on 05/01/2015 9:44:37 AM PDT by Red Badger

Scientists at the Department of Energy's SLAC National Accelerator Laboratory and Utrecht University have identified key mechanisms of the aging process of catalyst particles that are used to refine crude oil into gasoline. This advance could lead to more efficient gasoline production.

Their recent experiments studied so-called fluid catalytic cracking (FCC) particles that are used to break long-chain hydrocarbons in crude oil into smaller, more valuable hydrocarbons like gasoline.

"A major problem is that these catalysts quickly age and lose their activity, so tons of fresh catalysts have to be added to a reactor system every day," said lead researcher Florian Meirer, assistant professor of inorganic chemistry and catalysis at Utrecht University in the Netherlands. "We are trying to understand how this aging happens, and we're working with companies that produce these FCC catalysts to make the process more efficient."

In experiments using X-ray beams at SLAC's Stanford Synchrotron Radiation Lightsource (SSRL), a DOE Office of Science User Facility, the researchers studied FCC catalysts of various ages to better understand the effects of aging. They were able to image whole catalyst particles with high resolution so they could also see the catalysts' internal structure – like taking a panoramic landscape photograph where you can zoom in to see the ants.

"We have been able to localize the metal poisons that are a leading cause of catalyst aging and also determine how they influence the materials," said Bert Weckhuysen, professor of inorganic chemistry and catalysis at Utrecht University. "It's been studied in the past, but not at this resolution and not on the single particle level. That is the beauty of what we have done."

Casting Light on Metals

The problem of catalyst aging is widespread and costly. Worldwide, about 400 reactor systems refine crude oil into gasoline, and each system requires 10 to 40 tons of fresh FCC catalysts daily.

Crude oil is contaminated with metals, mostly iron, nickel and vanadium. These metals accumulate in catalysts during refining and eventually deactivate them. This is particularly an issue for low-quality crude oil, the largest available oil supply.

"Cheaper oil is often more polluted with metal poisons," said Weckhuysen. "If we want to use cheap oil as feedstock, then we have to improve FCC catalysts to make them more resistant against metal poisons."

In the SSRL study, the research team took a series of two-dimensional images of catalyst particles at various angles and used software they developed to combine them into three-dimensional images of whole particles. These images show the 3-D distribution of iron and nickel in catalysts of various ages.

"This 'mosaic imaging' technique is a major reason why we do our experiments at the SSRL," Meirer said.

Designing Better 'Catalyst Highways'

The researchers determined that the metals quickly accumulate on the outer surface of a catalyst, blocking the crude oil molecules from traveling through catalyst pores to reach deeper into its still-active core. They also showed that some catalyst particles stick together in clusters, which disturbs the fluidity of the catalysts and lowers gasoline production yields.

The Utrecht researchers are already working with companies to redesign these FCC catalysts.

"All of our conclusions are about the macropores, which are like highways for crude oil traveling through the catalysts. It's about blockage along Highway 101 or 280, not small streets in San Francisco," explained Weckhuysen. "Can we design better catalyst pores or highways?"

Explore further: Better catalysts for the petrochemical industry

More information: "Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography." Chem. Commun., 2015,51, 8097-8100 DOI: 10.1039/C5CC00401B

"Life and death of a single catalytic cracking particle." Science Advances 03 Apr 2015: DOI: 10.1126/sciadv.1400199

"Mapping Metals Incorporation of a Whole Single Catalyst Particle Using Element Specific X-ray Nanotomography" J. Am. Chem. Soc., 2015, 137 (1), pp 102–105 DOI: 10.1021/ja511503d

Journal reference: Science Advances


TOPICS: Business/Economy; Science; Travel
KEYWORDS: automobile; energy; gasoline; petroleum; refinery

SSRL X-rays are focused to illuminate a small sample of catalysts inside a movable cylindrical holder. A lens magnifies the resulting sample image onto a screen, a CCD camera captures the 2-D image, and software is used to reconstruct a 3-D image of the single catalyst particle from a series of these 2-D images. Credit: Florian Meirer/Utrecht University

VIDEO AT LINK.................

1 posted on 05/01/2015 9:44:37 AM PDT by Red Badger
[ Post Reply | Private Reply | View Replies]

To: thackney

Refinery ping!............


2 posted on 05/01/2015 9:45:02 AM PDT by Red Badger (Man builds a ship in a bottle. God builds a universe in the palm of His hand.............)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

GM used to install pellet converters on its cars and trucks.


3 posted on 05/01/2015 9:55:56 AM PDT by Paladin2
[ Post Reply | Private Reply | To 1 | View Replies]

To: Paladin2

Seems like to me they could introduce magnetic fields into the refining towers to get the iron and nickel contaminants out of the processes so the catalysts will last longer..........


4 posted on 05/01/2015 9:58:39 AM PDT by Red Badger (Man builds a ship in a bottle. God builds a universe in the palm of His hand.............)
[ Post Reply | Private Reply | To 3 | View Replies]

To: Red Badger

[[”We are trying to understand how this aging happens, and we’re working with companies that produce these FCC catalysts to make the process more efficient.”]]

so if they figure this out, gasoline will be around $.60 a gallon again?


5 posted on 05/01/2015 10:00:27 AM PDT by Bob434
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

Interesting idea. I would think that a finer grind on the catalytic particles are not trying to go for a porous structure would solve the issue to but then you have the problem of trying to separate the catalyst back out of the oil.


6 posted on 05/01/2015 10:01:14 AM PDT by American in Israel (A wise man's heart directs him to the right, but the foolish mans heart directs him toward the left.)
[ Post Reply | Private Reply | To 4 | View Replies]

To: American in Israel

OR, mix in some magnetite, then filter it out...........


7 posted on 05/01/2015 10:04:34 AM PDT by Red Badger (Man builds a ship in a bottle. God builds a universe in the palm of His hand.............)
[ Post Reply | Private Reply | To 6 | View Replies]

To: Red Badger

If it’s the pellets getting coated on the outer surface, mechanical abrasion could help.


8 posted on 05/01/2015 10:07:30 AM PDT by Paladin2
[ Post Reply | Private Reply | To 4 | View Replies]

To: Red Badger
The Crack Spread

The crack spread is probably the most important financial strategy within the energy industry. The price of the crack spread is so crucial that it is closely monitored by commercials, hedge funds, banks, energy companies and governments. The value of the crack spread summarizes and combines, in 1 strategy, the price of crude oil and its two most important derivatives: diesel and gasoline. The entire oil industry, which still plays a very significant role as far as energy production is concerned, is strongly and inevitably linked to the performance of the crack spread. The present research investigates the structure of the aforementioned strategy and the quantitative relationships of and among its components.

snip

http://www.insidefutures.com/article/1267689/The%20Crack%20Spread.html

 photo Crack Spread chart_zpsksbsz8od.png

9 posted on 05/01/2015 10:13:35 AM PDT by Zeneta (Thoughts in time and out of season.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Zeneta

I don’t know how much these things cost, the catalysts, but I assume they recycle them to be reused after being reprocessed.....................


10 posted on 05/01/2015 10:31:29 AM PDT by Red Badger (Man builds a ship in a bottle. God builds a universe in the palm of His hand.............)
[ Post Reply | Private Reply | To 9 | View Replies]

To: Red Badger

Neither do I.

At first glance of the article it seemed like these scientists have found some very interesting “inefficiencies” in the current process.

That’s great.

But there’s a trade off in costs that I didn’t see addressed.


11 posted on 05/01/2015 10:37:10 AM PDT by Zeneta (Thoughts in time and out of season.)
[ Post Reply | Private Reply | To 10 | View Replies]

To: Zeneta

If the major pollutants are iron and nickel, then it seems logical that magnetic means can be used to remove them, or at least minimize their effects.................


12 posted on 05/01/2015 10:39:00 AM PDT by Red Badger (Man builds a ship in a bottle. God builds a universe in the palm of His hand.............)
[ Post Reply | Private Reply | To 11 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson