Free Republic
Browse · Search
News/Activism
Topics · Post Article

To: OrthodoxPresbyterian
Doc? Polycarp? Have either of you ever needed to call in Richard Dawkins or Steven Jay Gould to consult on a medical case?

Though I've seen a few folks who appeared to be "Random Mutations" of the West Virginia type, no, I have not yet needed to consult Richard Dawkins or Steven Jay Gould.

On the contrary, things like the expression of penicillin resistance are the opposite of "evolution" but rather a "switching on" of genes already pre-existing in that organism or related organisms which have simply "swapped" DNA by known non-evolutionary mechanisms.

140 posted on 01/30/2003 11:39:33 AM PST by Polycarp
[ Post Reply | Private Reply | To 51 | View Replies ]


To: Polycarp
http://www.bact.wisc.edu/microtextbook/ControlGrowth/resistance.html

The basis of bacterial resistance to antibiotics

Inherent (Natural) Resistance Bacteria may be inherently resistant to an antibiotic. For example, a streptomycete has some gene that is responsible for resistance to its own antibiotic; or a Gram-negative bacterium has an outer membrane that establishes a permeability barrier against the antibiotic; or an organism lacks a transport system for the antibiotic; or it lacks the target or reaction that is hit by the antibiotic.

Acquired Resistance Bacteria can develop resistance to antibiotics, e.g. bacterial populations previously-sensitive to antibiotics become resistant. This type of resistance results from changes in the bacterial genome. Acquired resistance is driven by two genetic processes in bacteria: (1) mutation and selection (sometimes referred to as vertical evolution); (2) exchange of genes between strains and species (sometimes called horizontal evolution).

Vertical evolution is strictly a matter of Darwinian evolution driven by principles of natural selection: a spontaneous mutation in the bacterial chromosome imparts resistance to a member of the bacterial population. In the selective environment of the antibiotic, the wild type (non mutants) are killed and the resistant mutant is allowed to grow and flourish. The mutation rate for most bacterial genes is approximately 10-8. This means that if a bacterial population doubles from 108 cells to 2 x 108 cells, there is likely to be a mutant present for any given gene. Since bacteria grow to reach population densities far in excess of 109 cells, such a mutant could develop from a single generation during 15 minutes of growth.

Horizontal evolution is the acquisition of genes for resistance from another organism. For example, a streptomycete has a gene for resistance to streptomycin (its own antibiotic), but somehow that gene escapes and gets into E. coli or Shigella. Or, more likely, Some bacterium develops genetic resistance through the process of mutation and selection and then donates these genes to some other bacterium through one of several processes for genetic exchange that exist in bacteria.

Bacteria are able to exchange genes in nature by three processes: conjugation, transduction and transformation. Conjugation involves cell-to-cell contact as DNA crosses a sex pilus from donor to recipient. During transduction, a virus transfers the genes between mating bacteria. In transformation, DNA is acquired directly from the environment, having been released from another cell. Genetic recombination can follow the transfer of DNA from one cell to another leading to the emergence of a new genotype (recombinant). It is common for DNA to be transferred as plasmids between mating bacteria. Since bacteria usually develop their genes for drug resistance on plasmids (called resistance transfer factors, or RTFs), they are able to spread drug resistance to other strains and species during genetic exchange processes.

The combined effects of fast growth rates, high concentrations of cells, genetic processes of mutation and selection, and the ability to exchange genes, account for the extraordinary rates of adaptation and evolution that can be observed in the bacteria. For these reasons bacterial adaptation (resistance) to the antibiotic environment seems to take place very rapidly in evolutionary time: bacteria evolve fast!

149 posted on 01/30/2003 11:49:03 AM PST by Right Wing Professor
[ Post Reply | Private Reply | To 140 | View Replies ]

Free Republic
Browse · Search
News/Activism
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson