Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Sunspots influence climate
The Hindu -- Sci Tech ^ | Thursday, Jun 20, 2002 | unknown

Posted on 06/24/2002 8:44:11 AM PDT by Ernest_at_the_Beach

Solar-modulated cosmic rays affect cloud cover. With fewer clouds, and therefore less rain, maximum sunspots should cause the dust level to rise. During high volcanic activity, dust levels rise even in the absence of high sunspots.


With fewer clouds, and therefore less rain, sunspots should cause levels of atmospheric dust to rise.

UNIVERSITY AT Buffalo scientists working with ice cores have solved a mystery surrounding sunspots and their effect on climate that has puzzled scientists since they began studying the phenomenon. The research, published in the journal Geophysical Research Letters, provides striking evidence that sunspots — blemishes on the sun's surface indicating strong solar activity — do influence global climate change, but that explosive volcanic eruptions on Earth can completely reverse those influences.

"Knowing the mechanisms behind past climate changes is critical to our understanding of possible future changes in climate, such as global warming, and for assessing which of these changes are due to human activities and which arise naturally," explained co-author Michael Stolz of the Department of Physics in UB's College of Arts and Sciences.

According to the UB researchers, their work reveals two different mechanisms by which climate is affected by cosmic rays, charged particles that stream toward Earth and which are strongly influenced by solar activity.

To confirm any connection between sunspots and climate, a consistent correlation would have to be observed during many solar cycles, Michael Ram, professor of physics at UB explained. That's what he and his graduate students and co-authors have done with their study of ice cores, long cylinders of ancient ice from Greenland that serve as a frozen archive in that they record climate details from thousands of years ago.

Plain old dust, Ram added, holds the key in these experiments because it reflects how dry conditions were in a particular year. "Dust is a very sensitive parameter of climate," he explained.

Drawing on climate data derived from ice cores, the scientists used laser-light scattering techniques to determine the level of dust in the atmosphere for roughly the past 300 years, which is how far back sunspot data have been recorded.

The scientists started out with the assumption that a low level of cosmic rays on Earth resulting from high sunspot activity would lead to less cloud cover and less rain, with resulting high dust levels. "This was true for the first three or four solar cycles studied, from about 1930 to 1962, but then the correlation reversed itself, demonstrating that the mechanism couldn't be what we thought," said Ram.

It turned out that during those 32 years of positive sun/dust correlation, there was relatively little explosive volcanic activity worldwide. The researchers found that the same conditions existed between 1860 and 1882. Each of these relatively `quiet' periods came to an end with increased volcanic activity.

For example, in 1883, the Indonesian volcano Krakatau erupted in one of the deadliest volcanic disasters, killing 36,000 people. At the same time, the data started to exhibit low dust concentration whenever there was high sunspot activity, a correlation that violated the scientists' original assumptions.

"By carefully studying the timing of other volcanic eruptions, we found that they definitely coincided with all of the correlation reversals between sunspots and climate," said Ram.

"All energy comes from the sun, but the change in the visible radiation from the sun during any one of the solar cycle is less than one half of a per cent," explained Stolz. "Scientists have said it's impossible that so small a change could influence any signal in the climate.

But here we have evidence to show that it's not just radiation energy from the sun that is affecting climate, it's the solar-modulated cosmic rays that have a strong influence because of their impact on cloud cover."

With fewer clouds, and therefore less rain, the scientists reasoned, maximum sunspots should cause levels of atmospheric dust to rise.

But, the researchers discovered, during periods of high volcanic activity, high sunspot activity also results in high levels of atmospheric dust.

According to John Donarummo, co-author of the paper, it has long been known that volcanoes add more dust and more sulphates to the atmosphere.

The UB team discovered that these additional sulphates cause cosmic rays to have a pronounced effect on Earth by spurring the formation of small droplets in the atmosphere that, in turn, cause the formation of a type of cloud that does not produce rain. "During these times of high volcanic activity, the sunspot/climate correlation reverses and dust levels rise, even in the absence of high sunspots," explained Stolz.


TOPICS: Culture/Society; Extended News; News/Current Events; Politics/Elections; Technical
KEYWORDS: environment; globalwarming; globalwarminghoax; techindex; villarrica
Navigation: use the links below to view more comments.
first previous 1-2021-4041-42 last
To: Fellow Traveler
Think about the phase space - how much of the enery is kinetic and how much is gravitional potential (from being farther out). Put those on x and y axes (that is what phase space is, just you can have more than two when there are other components of energy).

In the near circular orbit, you've got nearly a line in phase space (portions in each near constant, therefore velocity and distance both near constant). In the eccentric one, you've got a wavy thing, like a sine, around where that line would be.

That is for energy. Then notice that angular momentum (also conserved) is in units of mass times length squared divided by time, so the same units as energy times time. If the kinetic energy were constant, then conservation of angular momentum would be trivial. But when it changes, the change in the kinetic portion implies something else with angular momentum must change.

The earth doesn't have anything to "push against", so it can't change its angular momentum in the plane of the orbit by spinning slower or faster overall. It can however change the vector projection of its angular momentum onto the plane of the orbit, by changing the angle between its spin and the orbital motion.

As the angle between the plane of its axial spin and the plane of its orbit precesses, net angular momentum moves into or out of the orbital component of the motion. (Akin to the movement of energy into and out of gravitational potential or kinetic, over on the conserved energy side).

Naturally, these are small effects, because the axis of spin precesses very slowly. It takes tens of thousands of revolutions for them to add up to anything. But the ice age variation time scale is 10,000 to 100,000 years, so small effects (in one orbit) have plenty of opportunity to add up.

I hope that helps.

41 posted on 06/26/2002 3:30:40 PM PDT by JasonC
[ Post Reply | Private Reply | To 40 | View Replies]

Greenland Ice Cap Is Melting, Raising Sea Level
Source: The Associated Press
Published: Jul 20, 2000 - 04:05 PM Author: By Paul Recer
Posted on 07/20/2000 14:37:50 PDT by Ms. AntiFeminazi
http://www.freerepublic.com/forum/a3977712e1941.htm


42 posted on 04/02/2006 1:30:07 PM PDT by SunkenCiv (https://secure.freerepublic.com/donate/)
[ Post Reply | Private Reply | To 1 | View Replies]


Navigation: use the links below to view more comments.
first previous 1-2021-4041-42 last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson