GPS satellites move at way less than the speed of light, but GPS calculations still need to account for Special and General Relativity. Special Relativity slows the satellites' clocks by about 7 microseconds a day, but General Relativity speeds them up by about 45 microseconds/day. The net is, they gain about 38 microseconds per day. From this link:
To achieve this [high] level of precision, the clock ticks from the GPS satellites must be known to an accuracy of 20-30 nanoseconds. However, because the satellites are constantly moving relative to observers on the Earth, effects predicted by the Special and General theories of Relativity must be taken into account to achieve the desired 20-30 nanosecond accuracy.
Because an observer on the ground sees the satellites in motion relative to them, Special Relativity predicts that we should see their clocks ticking more slowly (see the Special Relativity lecture). Special Relativity predicts that the on-board atomic clocks on the satellites should fall behind clocks on the ground by about 7 microseconds per day because of the slower ticking rate due to the time dilation effect of their relative motion [2].
Further, the satellites are in orbits high above the Earth, where the curvature of spacetime due to the Earth's mass is less than it is at the Earth's surface. A prediction of General Relativity is that clocks closer to a massive object will seem to tick more slowly than those located further away (see the Black Holes lecture). As such, when viewed from the surface of the Earth, the clocks on the satellites appear to be ticking faster than identical clocks on the ground. A calculation using General Relativity predicts that the clocks in each GPS satellite should get ahead of ground-based clocks by 45 microseconds per day.
The combination of these two relativitic effects means that the clocks on-board each satellite should tick faster than identical clocks on the ground by about 38 microseconds per day (45-7=38)! This sounds small, but the high-precision required of the GPS system requires nanosecond accuracy, and 38 microseconds is 38,000 nanoseconds. If these effects were not properly taken into account, a navigational fix based on the GPS constellation would be false after only 2 minutes, and errors in global positions would continue to accumulate at a rate of about 10 kilometers each day! The whole system would be utterly worthless for navigation in a very short time.
The engineers who designed the GPS system included these relativistic effects when they designed and deployed the system. For example, to counteract the General Relativistic effect once on orbit, the onboard clocks were designed to "tick" at a slower frequency than ground reference clocks, so that once they were in their proper orbit stations their clocks would appear to tick at about the correct rate as compared to the reference atomic clocks at the GPS ground stations. Further, each GPS receiver has built into it a microcomputer that, in addition to performing the calculation of position using 3D trilateration, will also compute any additional special relativistic timing calculations required [3], using data provided by the satellites.
You could theoretically open a teeny tiny wormhole big enough to squirt a photon at a time through, but you would need exotic matter to hold it open. Maybe with meta materials some how emulating negative energy...
No idea how much power you would need though and you may need two of them one for sending and one for receiving.
That is one idea how to build a realtime ftl communications setup...