Posted on 04/05/2012 10:21:54 PM PDT by sukhoi-30mki
Future Naval Force May Sail With the Strength of Titanium
For Immediate Release: April 3, 2012
ARLINGTON, Va. Steel may have met its match: An Office of Naval Research (ONR)-funded project will produce a full-size ship hull section made entirely with marine grade titanium using a welding innovation that could help bring titanium into future Navy ship construction, officials announced April 3.
The contractor team building this section recently completed the industrys longest friction-stir titanium alloy welds and aims to complete the ship hull section this summer. Friction stir welds more than 17 feet long joined the titanium alloy plates for the sections deck.
This fast, effective friction stir weld technique is now an affordable manufacturing process that takes advantage of titaniums properties, said Kelly Cooper, the program officer managing the project for ONRs Sea Warfare and Weapons Department.
What it means for the Navy
Titanium metal and its alloys are desirable materials for ship hulls and other structures because of their high strength, light weight and corrosion-resistance. If constructed in titanium, Navy ships would have lighter weight for the same sizeallowing for a bigger payloadand virtually no corrosion. But because titanium costs up to nine times more than steel and is technically difficult and expensive to manufacture into marine vessel hulls, it has been avoided by the shipbuilding industry. But perhaps not for much longer.
Researchers at the University of New Orleans School of Naval Architecture and Textron Marine and Land Systems are demonstrating the feasibility of manufacturing titanium ship hull structures. Using lower cost marine grades of titanium, they fabricated a 20-foot-long main deck panelcomposed of six titanium plates, joined together by friction stir weldingas part of technology studies for an experimental naval vessel called Transformable Craft, or T-Craft.
Since antiquity, blacksmiths have joined iron or steel parts together by heating them in a forge, placing them on an anvil and striking the two pieces repeatedly with a heavy hammer. After several repetitions of heating and striking, the two pieces were hammer forged or forge welded together.
Friction stir welding joins metals using the heat of friction produced by a spinning pin tool pressed down on both pieces of metal at their common joint. Friction heating produced by the high-speed rotation causes both metal pieces to heat up to a plastic condition, but not to melt. As the tool passes down the common joint line, the heated, plasticized metal from both pieces is kneaded together in the rotating tools wake, forming the weld between them.
How it was accomplished
Friction stir welding works well for most aluminum alloys. Titanium, however, is difficult to join by the same process because of the high temperatures required, and pin tool materials that erode and react with titanium, weakening the weld.
The researchers overcame that problem by using new titanium friction stir welding methods developed by Florida-based Keystone Synergistic Enterprises Inc. with funding from both ONR and the Air Force. The processes were scaled up and transferred to the National Center for Advanced Manufacturing (NCAM), which is a partnership between the University of New Orleans, NASA and the state of Louisiana.
To fabricate the ship hull structure, more than 70 feet of welded linear joints were madethe longest known welds in titanium made with the friction stir process. This friction stir welding achievement showed a noticeable improvement from previous similar processes. It was made at a high linear speedindicating reduced manufacturing time; showed excellent weld penetrationindicating a secure connection; and had no distortion of the titanium adjoining the weld.
Experts attribute the success to an effective design of the pin tool, process parameters that emphasized pin tool life and exact duplication of the process steps from facility to facility and machine to machine.
ONR funds collaborative projects investigating novel shipbuilding materials and improved processes for titanium friction stir weldingespecially its affordabilityas part of the Sea Base Enabler Innovative Naval Prototype program.
About the Office of Naval Research
The Department of the Navys Office of Naval Research (ONR) provides the science and technology necessary to maintain the Navy and Marine Corps technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 70 countries, 1,035 institutions of higher learning and 914 industry partners. ONR employs approximately 1,400 people, comprising uniformed, civilian and contract personnel, with additional employees at the Naval Research Lab in Washington, D.C.
The Chinese don’t even need to spy on us anymore. It’s all online.
Steel is easy to repair when damaged. Titanium, not so much...
Because aluminum ships don’t burn brightly enough?
Done is the right word. They have been scrapped.
Isn’t titanium brittle?
Was there not an SST that went down from
corrosion for chlorine (stress corrosion cracking)?
Good thing the USN got the Cl out of the H2O.
The Chinese are working on these projects.
I was wondering the same thing. Having spent six years in the Navy--with part of that time spent on a CG--I can recall being in some pretty heavy seas. I've seen pictures and film where ships in such waters actually "flex" while plowing through the wave troughs and crests. This is especially true of longer ships, where one part may be on the crest, and another in the trough.
Also, I believe it dends easily as well - the dents are difficult to take out - I think that was one of the reasons the Russians scrapped their Typhoon class subs and very expensive to maintain.
And avoid anything cadmium plated from coming in contact.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.