Free Republic
Browse · Search
News/Activism
Topics · Post Article

To: Frantzie
Just picked this out of the comments...looks interesting:

Transocean Deepwater Horizon Explosion-A Discussion of What Actually Happened?

5 posted on 05/24/2010 10:09:47 PM PDT by Ernest_at_the_Beach ( Support Geert Wilders)
[ Post Reply | Private Reply | To 3 | View Replies ]


From link at #5:

*********************************EXCERPT****************************************

Deepwater Horizon was finishing work on an exploration well named Macondo, in an area called Mississippi Canyon Block 252. After weeks of drilling, the rig had pushed a bit down over 18,000 feet, into an oil-bearing zone. The Transocean and BP personnel were installing casing in the well. BP was going to seal things up, and then go off and figure out how to produce the oil -- another step entirely in the oil biz.

The Macondo Block 252 reservoir may hold as much as 100 million barrels. That's not as large as other recent oil strikes in the Gulf, but BP management was still pleased. Success is success --
certainly in the risky, deep-water oil environment. The front office of BP Exploration was preparing a press release to announce a "commercial" oil discovery.

This kind of exploration success was par for the course for Deepwater Horizon. A year ago, the vessel set a record at another site in the Gulf, drilling a well just over 35,000 feet and discovering the 3 billion barrel Tiber deposit for BP. SoDeepwater Horizon was a great rig, with a great crew and a superb record. You might even say that is was lucky.

But perhaps some things tempt the Gods. Some actions may invite ill fate. Because suddenly, the wild and wasteful ocean struck with a bolt from the deep.

The Lights Went out;
and Then.
.. 

Witnesses state that the lights flickered on the Deepwater Horizon. Then a massive thud shook the vessel, followed by another strong vibration. Transocean employee Jim Ingram, a seasoned
offshore worker, told the U.K. Times that he was preparing for bed after working a 12-hour shift. "On the second [thud]," said Mr. Ingram, "we knew something was wrong." Indeed, something was very wrong.

Within a moment, a gigantic blast of gas, oil and drilling mud roared up through three miles of down-hole pipe and subsea risers. The fluids burst through the rig floor and ripped up into the gigantic draw-works. Something sparked. The hydrocarbons ignited. In a fraction of a second, the drilling deck of the Deepwater Horizon exploded into a fireball. The scene was an utter conflagration.

7 posted on 05/24/2010 10:13:23 PM PDT by Ernest_at_the_Beach ( Support Geert Wilders)
[ Post Reply | Private Reply | To 5 | View Replies ]

To: All
More from link at #5....detail on the "RISER":

***********************************************EXCERPT**********************************************

According to the Transocean website, the riser devices on the Deepwater Horizonwere manufactured by VetcoGray, a division of General Electric Oil & Gas. The specific designation is a "HMF-Class H, 21-inch outside diameter riser; 90 foot long joints with Choke & Kill, and booster and hydraulic  supply lines."

Here's a photo of something similar. These are Vetco risers sections that I saw on another vessel, the Transocean Discoverer Inspiration, when I visited that ship last month:

Transocean Horizon Riser Sections

The different color stripes on the risers indicate differing amounts of buoyancy. The idea is to put heavy riser pipe down at the bottom, connected to more buoyant risers above. The buoyancy
keeps the entire riser system in more or less neutral buoyancy, so that the drill ship doesn't have to somehow hoist up the huge weight of all that pipe.

As you can see, there's a large-diameter pipe in the middle of each riser. That pipe is then encased in a buoyant foam substance. The risers are bolted together at the flange sections. The bolts are about as big as the arm of a very strong man. The nuts, which tighten things down, are the size of paint cans.

After the risers are assembled and hanging down from the drilling vessel, the drilling personnel lower and raise drilling pipe through the large-diameter center riser pipe. All the drilling mud stays inside the drill pipe on the way down hole, and inside the riser pipe on the return.

On the side of the riser sections, you can see smaller-diameter pipes. These are choke & kill, booster and hydraulic pipe components. The pipes run parallel to the large-diameter inner pipe. These pipe systems run down to the blowout preventer on the seafloor.

The idea is to keep the drilling process an enclosed system. All the "drilling stuff" -- the drill-pipe, drilling-mud and drill-cutting returns -- stays inside the large-diameter pipe. The smaller pipes
hold fluid to transmit hydraulic power and help control drilling. In particular, the pipes on the side aid in communicating with and controlling the blowout preventer.

Technical Specs 

Ideally, when the risers are working as intended, nothing leaks out into the sea. Then again, you're not supposed to twist and bend the riser sections like a pretzel. So how strong is a riser
system? Extremely strong, actually.

According to technical literature from GE Oil & Gas, the riser equipment is "designed for use in
high-pressure, critical service and deep-water drilling and production applications." The pressure-containing components are rated for working pressures of 15,000 psi. That's the same as the Cameron blowout preventer on the Deepwater Horizon. The materials used in risers have
exceptional tensile and bending load characteristics.

According to Vetco paperwork that I've seen, the Class H riser sections have a 3.5 million pound
load-carrying capacity. That's the equivalent weight of about four fully fueled
Boeing 747s. These risers are super strong.

Still, it's not just any one single piece of riser section that does it all. These sections all get bolted
together, for 5,000 feet in this case. The riser sections all have to work together as a system. The whole string is only as strong as the weakest spot. And yes, even the strongest steel will break if you apply enough stress.

It all has to work together. You've got the riser sections, along with things called HMF flanged riser connectors. Then there are HMF riser joints; flex joints; telescopic joints; and, near the top, things called "fluid-bearing, nonintegral tensioner rings." Together, these all comprise the marine riser system.

In general, the riser components compensate for heave, surge, sway, offset and torque of the drilling vessel as the ship bounces around on the sea surface. The bottom line is to maintain a tight seal -- what's called "integrity" -- between the subsea blowout preventer stack and the surface
during drilling operations.

Down at the bottom, at the seafloor, the risers are connected to the blowout preventer by a connector device. The GE-Vetco spec is for a device that accommodates 7 million foot-pounds of bending
load capacity. That's about eight fully fueled Boeing 747s.

What's the idea? You want a secure connection between the high-pressure wellhead system and
the subsea blowout preventer stack. That's where mankind's best steel meets Mother Nature's high pressures.

High pressures? You had better believe it. And in this case, Mother Nature won. So looking forward, there's going to be a lot of forensic engineering on the well design and how things got monitored
during drilling. Transocean drilled the well, but BP designed it. So the key question is how did the down-hole pressures get away like they did?

16 posted on 05/24/2010 10:41:26 PM PDT by Ernest_at_the_Beach ( Support Geert Wilders)
[ Post Reply | Private Reply | To 5 | View Replies ]

Free Republic
Browse · Search
News/Activism
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson