Posted on 10/08/2009 11:56:51 PM PDT by neverdem
Vincenzo Amendola and Moreno Meneghetti, at the University of Padova, Italy, take inspiration from nature to design materials that can repair themselves.
Nature uses self-healing in all living systems to repair damage caused by environmental interactions. A simple case is repairing a skin wound - without this mechanism, we could not live. DNA repair, which must occur routinely in every living organism, is another example. But at what level do repairing mechanisms occur? Looking at the components of a living system, we find cells, which typically have micrometre dimensions. But we have to zoom in further, namely to the nanoscale, to see the sub-cellular structures on which nature's self-healing mechanisms work. There we can see why natural systems are inspirations for the world of nanostructures.

|
Self-healing of a polyelectrolyte-gold nanoparticle composite after damaged caused by external pressure (ref. 1)
|
But the same problem faced by living systems is now also the problem of synthetic nanoscale structures - they must self-heal when they interact with their environment. Nanosystems have a large surface with respect to their volume and their many surface atoms are prone to defects. So it is very important to develop and understand strategies for self-healing new nanostructured materials. Three general approaches have emerged - auto-assembling materials, shape-memory materials and materials capable of responsive chemical reactions - although they are still in their infancy.
In nature, many healing processes occur because a functional property of the system must be recovered - DNA healing is a good example. Scientists recently found that a similar mechanism occurs for gold nanoparticles. The particles possess a property known as multiphoton absorption, which means that they can absorb more than one photon from high intensity laser pulses at once. Researchers believe this property could be exploited, for example to protect eyes from intense laser pulses. But the nanoparticles quickly lose the property because the laser pulses fragment them. Now scientists have found that phthalocyanine mixed in with the nanoparticles encourages fragmented particles to aggregate. Laser pulses then fuse the aggregated structures into larger nanoparticles. This self-healing mechanism, promoted by the same laser that inflicts the damage, preserves the multiphoton property of the nanoparticles.
While self-healing of functional properties is rare at present, researchers will be forced to look in this direction in the future to obtain nanomaterials with improved properties. Natural processes could provide the inspiration required to meet these nanotechnological challenges.
1 C Y Jiang et al., Nat. Mater., 2004, 3, 721
Self-healing at the nanoscale
Vincenzo Amendola and Moreno Meneghetti, Nanoscale, 2009, 1, 74
DOI: 10.1039/b9nr00146h
Instant insight: A calculated risk
How safe are nanoparticles? Amanda Barnard reveals how computation can help to identify and prevent nanohazards
Instant insight: Smart dental implants
Henning Schliephake discusses the state-of-the-art dental implants making their way to a dentist's surgery near you
Instant insight: Bone repair breakthrough
Thanks to nanotechnology, today's bone implants are so much more than your grandparent's hip replacement, say Thomas Webster and colleagues at Brown University, US
A protective coating that stops corrosion as soon as it starts has been developed by European scientists.
bflr
FReepmail me if you want on or off my health and science ping list. Anyone can post any unposted link as they see fit.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.