Free Republic
Browse · Search
News/Activism
Topics · Post Article

To: GoodDay

So how does this shape up with the prebiotic Earth? On the early Earth it is likely that the ocean had a volume of 1 x 1024 litres. Given an amino acid concentration of 1 x 10-6 M (a moderately dilute soup, see Chyba and Sagan 1992 [23]), then there are roughly 1 x 1050 potential starting chains, so that a fair number of efficent peptide ligases (about 1 x 1031) could be produced in a under a year, let alone a million years. The synthesis of primitive self-replicators could happen relatively rapidly, even given a probability of 1 chance in 4.29 x 1040 (and remember, our replicator could be synthesized on the very first trial).

Assume that it takes a week to generate a sequence [14,16]. Then the Ghadiri ligase could be generated in one week, and any cytochrome C sequence could be generated in a bit over a million years (along with about half of all possible 101 peptide sequences, a large proportion of which will be functional proteins of some sort).

Although I have used the Ghadiri ligase as an example, as I mentioned above the same calculations can be performed for the SunY self replicator, or the Ekland RNA polymerase. I leave this as an exercise for the reader, but the general conclusion (you can make scads of the things in a short time) is the same for these oligonucleotides.

Search spaces, or how many needles in the haystack?
So I’ve shown that generating a given small enzyme is not as mind-bogglingly difficult as creationists (and Fred Hoyle) suggest. Another misunderstanding is that most people feel that the number of enzymes/ribozymes, let alone the ribozymal RNA polymerases or any form of self-replicator, represent a very unlikely configuration and that the chance of a single enzyme/ribozyme forming, let alone a number of them, from random addition of amino acids/nucleotides is very small.

However, an analysis by Ekland suggests that in the sequence space of 220 nucleotide long RNA sequences, a staggering 2.5 x 10112 sequences are efficent ligases [12]. Not bad for a compound previously thought to be only structural. Going back to our primitive ocean of 1 x 1024 litres and assuming a nucleotide concentration of 1 x 10-7 M [23], then there are roughly 1 x 1049 potential nucleotide chains, so that a fair number of efficent RNA ligases (about 1 x 1034) could be produced in a year, let alone a million years. The potential number of RNA polymerases is high also; about 1 in every 1020 sequences is an RNA polymerase [12]. Similar considerations apply for ribosomal acyl transferases (about 1 in every 1015 sequences), and ribozymal nucleotide synthesis [1, 6, 13].

Similarly, of the 1 x 10130 possible 100 unit proteins, 3.8 x 1061 represent cytochrome C alone! [29] There’s lots of functional enyzmes in the peptide/nucleotide search space, so it would seem likely that a functioning ensemble of enzymes could be brewed up in an early Earth’s prebiotic soup.

So, even with more realistic (if somewhat mind beggaring) figures, random assemblage of amino acids into “life-supporting” systems (whether you go for protein enzyme based hypercycles [10], RNA world systems [18], or RNA ribozyme-protein enzyme coevolution [11, 25]) would seem to be entirely feasible, even with pessimistic figures for the original monomer concentrations [23] and synthesis times.


29 posted on 06/17/2009 7:28:13 AM PDT by FormerRep
[ Post Reply | Private Reply | To 26 | View Replies ]


To: FormerRep

Oops - apparently the superscripting didn’t transfer. In each mutiplicate “1 X” insert a 10 with the following number actually an exponent. “volume of 1 x 1024 litres” should read “volume of 1 x 10 (to the 1024th power) litres


30 posted on 06/17/2009 7:31:54 AM PDT by FormerRep
[ Post Reply | Private Reply | To 29 | View Replies ]

To: FormerRep

http://www.talkorigins.org/faqs/abioprob/abioprob.html

“So how does this shape up with the prebiotic Earth? On the early Earth it is likely that the ocean had a volume of 1 x 1024 litres. Given an amino acid concentration of 1 x 10-6 M (a moderately dilute soup, see Chyba and Sagan 1992 [23]), then there are roughly 1 x 1050 potential starting chains, so that a fair number of efficent peptide ligases (about 1 x 1031) could be produced in a under a year, let alone a million years. The synthesis of primitive self-replicators could happen relatively rapidly, even given a probability of 1 chance in 4.29 x 1040 (and remember, our replicator could be synthesized on the very first trial).
Assume that it takes a week to generate a sequence [14,16]. Then the Ghadiri ligase could be generated in one week, and any cytochrome C sequence could be generated in a bit over a million years (along with about half of all possible 101 peptide sequences, a large proportion of which will be functional proteins of some sort).
Although I have used the Ghadiri ligase as an example, as I mentioned above the same calculations can be performed for the SunY self replicator, or the Ekland RNA polymerase. I leave this as an exercise for the reader, but the general conclusion (you can make scads of the things in a short time) is the same for these oligonucleotides.
Search spaces, or how many needles in the haystack?
So I’ve shown that generating a given small enzyme is not as mind-bogglingly difficult as creationists (and Fred Hoyle) suggest. Another misunderstanding is that most people feel that the number of enzymes/ribozymes, let alone the ribozymal RNA polymerases or any form of self-replicator, represent a very unlikely configuration and that the chance of a single enzyme/ribozyme forming, let alone a number of them, from random addition of amino acids/nucleotides is very small.
However, an analysis by Ekland suggests that in the sequence space of 220 nucleotide long RNA sequences, a staggering 2.5 x 10112 sequences are efficent ligases [12]. Not bad for a compound previously thought to be only structural. Going back to our primitive ocean of 1 x 1024 litres and assuming a nucleotide concentration of 1 x 10-7 M [23], then there are roughly 1 x 1049 potential nucleotide chains, so that a fair number of efficent RNA ligases (about 1 x 1034) could be produced in a year, let alone a million years. The potential number of RNA polymerases is high also; about 1 in every 1020 sequences is an RNA polymerase [12]. Similar considerations apply for ribosomal acyl transferases (about 1 in every 1015 sequences), and ribozymal nucleotide synthesis [1, 6, 13].
Similarly, of the 1 x 10130 possible 100 unit proteins, 3.8 x 1061 represent cytochrome C alone! [29] There’s lots of functional enyzmes in the peptide/nucleotide search space, so it would seem likely that a functioning ensemble of enzymes could be brewed up in an early Earth’s prebiotic soup.
So, even with more realistic (if somewhat mind beggaring) figures, random assemblage of amino acids into “life-supporting” systems (whether you go for protein enzyme based hypercycles [10], RNA world systems [18], or RNA ribozyme-protein enzyme coevolution [11, 25]) would seem to be entirely feasible, even with pessimistic figures for the original monomer concentrations [23] and synthesis times.”


Oops! I guess you forgot to mention that you were plagiarizing a post from the knee-jerk Darwinist site “Talk Origins.” See above link.

When in doubt, do a data-dump from another site and let the readers sort it out.

I did check out your bio page on FR. I was duly impressed when you correctly added “3” plus “21” to get “24.” That was the only actual calculation you’ve performed so far. The above crap from TalkOrigins is a classic handwaving argument, in which one assumes anything one wants (no experiments allowed, please) and then proceeds NOT to perform any actual calculations. TalkOrigins is famous for that nonsense. I see you’ve copy/pasted their diagram, too, on abiogenesis. Why don’t you just save some time (as well as practice a little bit of that virtue called “intellectual honesty”) and just post the link?

Sort of like this...

http://www.discovery.org/a/2177
Intelligent Design: The Origin of Biological Information and the Higher Taxonomic Categories
By: Stephen C. Meyer
Proceedings of the Biological Society of Washington

http://www.discovery.org/a/2184
DNA and the Origin of Life:
Information, Specification, and Explanation
By: Stephen C. Meyer
Darwinism, Design, and Public Education

http://www.discovery.org/a/3209
On the Origins of Life
By: David Berlinski
Commentary
June 14, 2007

Original Article, first published in February, 2006

The Berlinski article (originally published in “Commentary Magazine”) is an excellent overview and critique of abiogenesis theories. The Meyer articles are an excellent overview of Intelligent Design and critique of Darwinism.


43 posted on 06/17/2009 11:20:50 PM PDT by GoodDay (Palin for POTUS 2012)
[ Post Reply | Private Reply | To 29 | View Replies ]

Free Republic
Browse · Search
News/Activism
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson